

16-20 JULY 2023 + CALGARY, CANADA + HYATT REGENCY CALGARY

ICES 2023 EVENT PROGRAM ORGANIZED BY ICES STEERING COMMITTEE

Collins Aerospace

leidos

PARAGON

ŞIĘŖŖĄ

BOEING

OCEANEERING

ILC DOVER

BEYOND BOUNDARIES

SUPPORTED BY

ICES Thermal and Environmental Control Systems (TECS) Committee ICES International Committee (IIC)

American Institute of Chemical Engineers Environmental Systems Committee (AIChE)

ICES Crew Systems (ICS) Technical Committee

American Institute of Aeronautics and Astronautics Life Science and Systems (AIAA-LS&S) Technical Committee

A half-century of innovation and advancement

For more than 50 years, Collins Aerospace has been innovating and advancing the future of space travel. And we're just getting started. From space suits, environmental controls and life support systems to operations support and power management, we have the technology to equip your mission and help your astronauts – and commercial passengers – explore the final frontier.

ENABLING HUMANKIND TO LIVE, WORK AND PLAY IN SPACE

TABLE OF CONTENTS

4	CHAIR'S WELCOME
5	EVENT OVERVIEW
6 - 7	GENERAL INFORMATION
8	SESSION CHAIR & SPEAKER BREAKFAST
9	CONFERENCE APP
10 - 11	NETWORKING & SPECIAL EVENTS
12 - 15	PROGRAM AT A GLANCE
16	OPENING PLENARY SESSION
18 - 19	MEETING SPACE FLOOR PLAN
20 - 28	MONDAY TECHNICAL SESSIONS
30 - 31	STUDENT POSTER COMPETITION/RECEPTION
32 - 42	TUESDAY TECHNICAL SESSIONS
45	GIRLETZ RODEO RANCH
46 - 56	WEDNESDAY TECHNICAL SESSIONS
58	EARLY CAREER WORKSHOP
60	AWARDS BANQUET KEYNOTE SPEAKER
62 - 63	AWARDS PRESENTATIONS
64 - 70	THURSDAY TECHNICAL SESSIONS
72 - 74	TECHNICAL ORGANIZING COMMITTEES

CHAIR'S WELCOME

On behalf of the organizing committee, it is with great pleasure and excitement that I extend a warm welcome to all attendees of the 52nd International Conference on Environmental Systems (ICES) in the beautiful city of Calgary, Canada. We are delighted to have you join us for this international gathering of scientists and engineering professionals dedicated to exploring the fascinating realm of humans living in space.

ICES serves as a platform for collaboration, knowledge exchange, and innovation, fostering meaningful discussions and groundbreaking discoveries within the field. With the conference theme centered around the challenges and advancements in human space exploration, we are certain that the coming days will be filled with enlightening presentations, thoughtprovoking discussions, and valuable networking opportunities.

Calgary, nestled in the picturesque province of Alberta, offers a stunning backdrop for this significant event. Renowned for its natural beauty, vibrant culture, and warm hospitality, this city provides an ideal setting for fostering new connections and nurturing existing

collaborations. We encourage you to take some time to explore Calgary's diverse attractions, from the majestic Rocky Mountains to its vibrant downtown core, which is rich in art, entertainment, and culinary experiences.

ICES has brought together a distinguished lineup of keynote speakers, esteemed experts, and industry leaders who will share their cutting-edge research and insights with the aim of advancing our understanding of human life in extreme environments. We are confident that the presentations and discussions will provide fresh perspectives, spark inspiration, and pave the way for new avenues of exploration in environmental control and life support systems, human factors, thermal control systems and EVA systems technology.

Moreover, this conference presents a unique opportunity for you to showcase your own research, projects, and breakthroughs. We encourage you to actively participate in the technical and poster sessions, as well as the interactive events and receptions. Share your knowledge, engage in fruitful debates, and contribute to the collective intelligence of this esteemed gathering.

We extend our gratitude to the steering committee, our sponsors, session chairs, conference planner and all those who have contributed to making this conference a reality. Their unwavering support and dedication have been instrumental in ensuring the success of this event.

As we gather to embark on this incredible journey of discovery and collaboration, we encourage you to engage with your fellow attendees, seize every opportunity for dialogue and knowledge exchange, and embrace the diversity of ideas that this conference will undoubtedly foster. Let us work together to shape the future of human space exploration and create a lasting impact on our planet and beyond.

Once again, a warm welcome to the 52nd ICES in Calgary, Canada. We hope that this conference will not only be intellectually enriching but also leave you with fond memories of this vibrant city and lasting connections with your fellow colleagues.

Wishing you a productive, inspiring, and unforgettable experience at ICES.

Shawn R Macleod - ICES 2023 Conference Chair

+ ORGANIZING COMMITTEE

CONFERENCE CHAIR Shawn R Macleod Leidos

CONFERENCE VICE-CHAIR Kevin R Duda Draper Laboratory

+ STEERING COMMITTEE

Art Avila TECS TECHNICAL PROGRAM CHAIR NASA Jet Propulsion Laboratory

Martin Altenburg ICES INTERNATIONAL TECHNICAL PROGRAM CHAIR Airbus

Morgan Abney AICHE PROGRAM CHAIR NASA Engineering and Safety Center

Shane McFarland ICES CREW SYSTEMS TECHNICAL PROGRAM CHAIR NASA Johnson Space Center

Jim Nabity AIAA LS&S TECHNICAL PROGRAM CHAIR University of Colorado - Boulder

Tom Leimkuehler PAST CONFERENCE CHAIR 2022 NASA Johnson Space Center

Stéphane Lapensée PAST CONFERENCE CHAIR 2020/2021 European Space Agency

EVENT OVERVIEW

SUNDAY 16 JULY	MONDAY 17 JULY	TUESDAY 18 JULY	WEDNESDAY 19 JULY	THURSDAY 20 JULY
	SESSION CHAIR & SPEAKER BREAKFAST 7:00-8:15 HRS IMPERIAL 5/7/9		SESSION CHAIR & SPEAKER BREAKFAST 7:00-8:15 HRS IMPERIAL 5/7/9	
	PLENARY SESSION 8:30 - 10:00 HRS IMPERIAL BALLROOM	TECHNICAL SESSIONS 8:00-10:00 HRS	TECHNICAL SESSIONS 8:30-10:00 HRS	EARLY MORNING COFFEE BREAK GRAND FOYER 2/3/4
	MORNING COFFEE BREAK GRAND FOYER 2/3/4	MORNING COFFEE BREAK <i>GRAND FOYER 2/3/4</i>	MORNING COFFEE BREAK <i>GRAND FOYER 2/3/4</i>	9:00-10:30 HRS
	TECHNICAL SESSIONS 10:30-12:00 HRS	TECHNICAL SESSIONS 10:30-12:30 HRS	TECHNICAL SESSIONS 10:30-12:00 HRS	MORNING COFFEE BREAK GRAND FOYER 2/3/4
	LUNCH ON OWN 12:00-14:00 HRS		LUNCH ON OWN 12:00-14:00 HRS	11:00-13:00 HRS
	STUDENT POSTER JUDGING <i>IMPERIAL 4/6/8</i>	LUNCH ON OWN 12:30-14:30 HRS COMMITTEE MEETINGS	COMMITTEE MEETINGS ICS - The Studio IIC - The Gallery	
CONFERENCE REGISTRATION & CHECK-IN		TECS - The Studio AIChE - The Gallery AIAA LS&S - Stephen B		
13:00-19:00 HRS GRAND FOYER 1/2	TECHNICAL SESSIONS 14:00-16:00 HRS	TECHNICAL SESSIONS 14:30-16:30 HRS	TECHNICAL SESSIONS 14:00-16:00 HRS	
	NETWORKING COFFEE BREAK GRAND FOYER 2/3/4		EARLY CAREER WORKSHOP 16:00-17:30 HRS	
WELCOME RECEPTION	TECHNICAL SESSIONS 16:30-18:00 HRS	FREE TIME	THOMSONS SOCIAL HUB	
17:30-19:30 HRS ATRIUM + THOMSONS KITCHEN & BAR	STUDENT POSTER RECEPTION 18:00-19:30 HRS IMPERIAL 4/6/8	WILD WEST SHOW GIRLETZ RODEO	FREE TIME PRE-BANQUET RECEPTION 18:15 HRS - GRAND FOYER 2/3/4	
		RANCH BUSES LOAD @ 17:30 HRS FROM HYATT REGENCY CALGARY	ICES 2023 AWARDS BANQUET 19:00 HRS IMPERIAL BALLROOM IMMEDIATELY FOLLOWING BANQUET DESSERT RECEPTION ATRIUM + THOMSONS KITCHEN & BAR	

REGISTRATION AND INFORMATION CENTER HOURS

The ICES Registration and Information Center will be located on the 3rd Floor in the Grand Foyer

HOURS ARE AS FOLLOWS:			
SUNDAY, 16 JULY	— 13:00-19:00 hrs		
MONDAY, 17 JULY	— 06:30-18:00 hrs		
TUESDAY, 18 JULY	— 07:30-16:30 hrs		
WEDNESDAY, 19 JULY	— 07:30-16:00 hrs		

THURSDAY, 20 JULY _____ 08:30-13:00 hrs

COMMITTEE MEETINGS

ICES THERMAL AND ENVIRONMENTAL CONTROL SYSTEMS (TECS) COMMITTEE Tuesday, 18 July 12:30-14:30 hrs The Studio (2nd floor)

AICHE ENVIRONMENTAL SYSTEMS COMMITTEE (AICHE) Tuesday, 18 July 12:30-14:30 hrs The Gallery (2nd floor)

AIAA LIFE SCIENCES & SYSTEMS TECHNICAL COMMITTEE (AIAA LS&S)

Tuesday, 18 July 12:30-14:30 hrs Stephen B (3rd floor)

ICES CREW SYSTEMS (ICS) TECHNICAL COMMITTEE Wednesday, 19 July 12:00-14:00 hrs The Gallery (2nd floor)

ICES INTERNATIONAL COMMITTEE (IIC) Wednesday, 19 July 12:00-14:00 hrs The Studio (2nd floor)

NETWORKING COFFEE BREAKS

They will be located on the 3rd Floor in Grand Foyer 2/3/4

MONDAY 17 JULY	10:00-10:30 hrs 16:00-16:30 hrs
TUESDAY 18 JULY	10:00-10:30 hrs
WEDNESDAY 19 JULY	10:00-10:30 hrs
THURSDAY 20 JULY	08:30-09:00 hrs 10:30-11:00 hrs

DOWNLOAD APP!

We're glad you've joined us here in Calgary, Canada. Thank you to all our sponsors for their

SESSION CHAIR REPORTS

All Session Chairs are asked to complete a session chair report to evaluate their session for future planning. The online report can be found on the conference app or on www.ices.space under the Session Chair Materials & Resources page.

AUDIO/VISUAL

Each session room will be preset with the following: one video/data projector, one screen, one microphone & sound system (if necessitated by room size) and one laser pointer/slide advancer.

ICES does not provide computers to connect to projectors – you must provide your own laptop. Please note that ICES does not provide security in the session rooms and recommends that items of value, including computers, not be left unattended. Any additional audiovisual requirements or equipment requested will be at the cost of the presenter. Technicians are on site from Canadian View Corp.

CONFERENCE PROCEEDINGS

The proceedings collection for ICES 2023 has been made available on the Texas Tech University Libraries site as of Sunday, 16 July 2023. Go to www.ices.space to access the Conference Proceedings page or links can also be found on the conference app. If you are interested in obtaining a digital copy of ALL conference proceedings, you can download it to a USB at the ICES Registration Desk.

"NO PAPER, NO PODIUM" & "NO PODIUM, NO PAPER" POLICIES

If a written paper is not submitted by the final manuscript deadline, authors will not be permitted to present the paper at the conference. It is the responsibility of those authors whose papers or presentations are accepted to ensure that a representative attends the conference to present the paper. If a paper is not presented at the conference, it will be withdrawn from the conference proceedings. These policies are intended to eliminate no-shows and to improve the quality of the conference for attendees.

PUBLICATION POLICY

ICES will not consider for presentation or publication any paper that has been presented or published elsewhere.

RESTRICTIONS

Photography, video, or audio recording of technical sessions is prohibited. ICES speakers and attendees are reminded that some topics discussed in the conference could be controlled by the International Traffic in Arms Regulations (ITAR). U.S. nationals (U.S. citizens and permanent residents) are responsible for ensuring that technical data they present in open sessions to non-U.S. nationals in attendance or in conference proceedings are not export restricted by the ITAR. U.S. nationals are likewise responsible for ensuring that they don't discuss ITAR export-restricted information with non-U.S. nationals in attendance.

PLEASE NOTE: There will be a photographer on site documenting all events other than technical sessions.

SESSION CHAIR & SPEAKER BREAKFAST

NEW FOR 2023: ICES WILL HOST TWO SESSION CHAIR & SPEAKER BREAKFASTS.

- —— Speakers who are presenting on Monday or Tuesday (July 17-18) will attend the Monday morning breakfast.
- Speakers who are presenting on Wednesday or Thursday (July 19-20) will attend the Wednesday morning breakfast.

All Speakers and Session Chairs will be served a breakfast buffet in IMPERIAL Ballroom while they meet to coordinate presentations.

WHO SHOULD ATTEND THE MONDAY BREAKFAST?

All Session Chairs and Speakers (Presenters) from the following sessions are scheduled to attend from 7:00-8:15 hrs on Monday, July 17 in IMPERIAL 5/7/9.

102-A	102-B	102-C		
104-A	104-B			
201-A	201-B	201-C	201-D	
202-A	202-B			
205-A	205-B	205-C		
206				
207-A				
300-A	300-В			
302-A	302-B	302-C	302-D	302-E
303-A	303-B	303-C	303-D	303-E
304-A				
400-A	400-B	400-C		
401				
402-A	402-B	402-C		
404				
408-A	408-B			
500-A	500-B			
502-A	502-B	502-C	502-D	
506-A	506-B	506-C	506-D	
509-A				
513-A	513-B			

WHO SHOULD ATTEND THE WEDNESDAY BREAKFAST?

All Session Chairs and Speakers (Presenters) from the following sessions are scheduled to attend from 7:00-8:15 hrs on Wednesday, July 19 in IMPERIAL 4/6/8.

101-A	101-B			
103-A	103-B			
100 / X	100 D			
107				
203-A	203-B			
203 A	203 B 204-B	204-C		
207-B	207-C	204-0		
301	207-0			
302-F	302-G	302-H	302-1	302-J
302-F 304-B		302-H	302-1 304-E	302-J 304-F
	304-C	304-D	304-E	304-F
305	207 0	207.0		
307-A	307-B	307-C		
308-A	308-B	308-C		
403-A	403-B			
405				
406-A	406-B			
407-A	407-B			
501				
503				
504				
509-B	509-C			
510-A	510-B			
511				

ICES 2023 CONFERENCE APP!

ONETWORKING & SPECIAL EVENTS

WELCOME RECEPTION SPONSORED BY

Join the entire ICES community for a welcome reception on **Sunday**, **16 July from 17:30-19:30 hrs, in the Atrium + Thomsons Kitchen & Bar** on the Lobby Level. Take this opportunity to refresh old contacts and meet new participants the night before the conference begins. Additional tickets for guests may be purchased at the ICES Registration/Info desk.

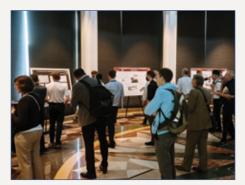
OPENING PLENARY SESSION SPONSORED BY

To kick off the week we will gather for the Opening Plenary Session on **Monday**, **17 July from 08:30-10:00 hrs in Imperial 4/6/8.** There will remarks by the ICES 2023 Conference Chair, Shawn R Macleod, and a special presentation by Jeremy Parsons, Deputy Program Manager for the Exploration Ground Systems Program (NASA Kennedy Space Center).

STUDENT POSTER RECEPTION SPONSORED BY

All attendees are invited to this "happy hour" reception to view and discuss the work presented by the students participating in this year's poster competition. The reception will be held **Monday, 17 July from 18:00-19:30** hrs in Imperial 4/6/8.

GIRLETZ RANCH WILD WEST SHOW SPONSORED BY



The ICES community will enjoy a one-of-a-kind **Wild West Show at the Girletz Ranch on the evening of Tuesday 18 July.** Casual attire and cowboy boots preferred! Additional tickets for guests may be purchased at the ICES Registration/Info desk.

Buses depart @ 17:30 for the Ranch.

EARLY CAREER WORKSHOP SPONSORED BY

OCEANEERING

This casual forum is designed to allow for a unique networking opportunity for students and young professionals to connect with veterans in the field to ask about how to best develop their future careers in the domain of environmental systems. This Workshop will take place on **Wednesday**, **19 July at 16:00-17:30 hrs in the Thomsons Social Hub** (back of the hotel restaurant). If you have not had an opportunity to RSVP for this event, please stop by the ICES Registration/ Information desk on the lower level to let us know you are interested in attending.

ICES AWARDS BANQUET

The ICES 2023 Awards Banquet will be held at the **Hyatt Regency Calgary on** Wednesday, 19 July.

PRE-BANQUET RECEPTION

Join us for a happy hour before the Banquet at 18:15 hrs in the Grand Foyer.

ICES AWARDS BANQUET SPONSORED BY

The reception will be **followed by dinner in the Imperial Ballroom** which includes an awards program and a keynote presentation by **Dr. Lisa Watson-Morgan, Manager - Human Landing System Program** (NASA Marshall Space Flight Center).

Additional tickets for guests may be purchased at the ICES Registration/Info Desk and each ticket includes both the pre-reception and the dessert reception.

DESSERT RECEPTION SPONSORED BY

Immediately following the awards presentation there will be a **Dessert Reception in the Atrium + Thomsons Kitchen & Bar** on the lobby level.

SUNDAY, 16 JULY 2023

13:00 hrs	CONFERENCE REGISTRATION	GRAND FOYER 1
17:30 hrs	WELCOME RECEPTION sponsored by Collins Aerospace	ATRIUM + THOMSONS KITCHEN & BAR
MONDAY, 17 JUI	Y 2023	
7:00 hrs	SESSION CHAIR & SPEAKER BREAKFAST *for Monday + Tuesday Presenters*	IMPERIAL 5/7/9
8:30 hrs	OPENING PLENARY SESSION sponsored by Vertex Aerospace	IMPERIAL BALLROOM
10:00 hrs	Networking Coffee Break	GRAND FOYER 2/3/4
10:30 hrs	TECHNICAL SESSIONS Two-Phase Thermal Control Technology - ICES201-A Thermal and Environmental Control Engineering Analysis and Software - ICES207-A International Space Station ECLS: Systems - ICES404 Extravehicular Activity: Systems - ICES401 Life Science/Life Support Research Technologies - ICES500-A Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development - ICES303-A	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3
12:00 hrs	Lunch Break - Attendees on Own	
12:00 hrs	STUDENT POSTER JUDGING (Lunch provided to students and judges)	IMPERIAL 4/6/8
14:00 hrs	TECHNICAL SESSIONS Two-Phase Thermal Control Technology - ICES201-B Thermal Control for Planetary and Small Body Surface Missions - ICES102-A Extravehicular Activity: PLSS Systems - ICES402-A Extravehicular Activity: Space Suits - ICES400-A Life Science/Life Support Research Technologies - ICES500-B Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development - ICES303-B Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES303-B Physio-Chemical Life Support Sensor and Control Technology - ICES205-A Space Architecture - ICES502-A	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
16:00 hrs	Networking Coffee Break	GRAND FOYER 2/3/4
16:30 hrs	TECHNICAL SESSIONSTwo-Phase Thermal Control Technology - ICES201-CThermal Control for Planetary and Small Body Surface Missions - ICES102-BExtravehicular Activity: PLSS Systems - ICES402-BExtravehicular Activity: Space Suits - ICES400-BHuman Exploration Beyond Low Earth Orbit: Missions and Technologies - ICES506-APhysio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development - ICES303-CPhysio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-BAdvanced Life Support Sensor and Control Technology - ICES205-BSpace Architecture - ICES502-B	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
18:00 hrs	STUDENT POSTER RECEPTION sponsored by Boeing	IMPERIAL BALLROOM

TUESDAY, 18 JULY 2023

8:00 hrs	TECHNICAL SESSIONS 201: Two-Phase Thermal Control Technology - ICES201-D 206: Crewed Orbiting Infrastructures, Habitats, Space Station and Payload Thermal Control - ICES206 Thermal Control for Planetary and Small Body Surface Missions - ICES102-C Extravehicular Activity: PLSS Systems - ICES402-C Extravehicular Activity: Space Suits - ICES400-C Human Exploration Beyond Low Earth Orbit: Missions and Technologies - ICES506-B Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development - ICES303-D Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-C Advanced Life Support Sensor and Control Technology - ICES205-C Space Architecture - ICES502-C	WALKER/BANNERMAN WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
10:00 hrs	Networking Coffee Break	GRAND FOYER 2/3/4
10:30 hrs	TECHNICAL SESSIONS Satellite, Payload, and Instrument Thermal Control - ICES202-A Advances in Thermal Control Technology - ICES104-A Human Health and Performance Analysis - ICES513-A ISS US EVA-80 Water Helmet Incident Investigation - ICES408-A Human Exploration Beyond Low Earth Orbit: Missions and Technologies - ICES506-C Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development - ICES303-E Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-D ECLSS Modeling and Test Correlations - ICES300-A Space Architecture - ICES502-D	WALKER/BANNERMAN DOLL/HERAL STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
12:30 hrs	Lunch Break - Attendees on Own	
12:30 hrs	Committee Meeting Luncheons: TECS Thermal and Environmental Control Systems Committee AIChE Environmental Systems Committee AIAA Life Sciences & Systems Technical Committee	The Studio (2nd floor) The Gallery (2nd floor) Stephen B
14:30 hrs	TECHNICAL SESSIONS Satellite, Payload, and Instrument Thermal Control - ICES202-B Advances in Thermal Control Technology - ICES104-B Human Health and Performance Analysis - ICES513-B ISS US EVA-80 Water Helmet Incident Investigation - ICES408-B Human Exploration Beyond Low Earth Orbit: Missions and Technologies - ICES506-D Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development - ICES304-A Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-E ECLSS Modeling and Test Correlations - ICES300-B Fire Safety in Spacecraft and Enclosed Habitats - ICES509-A	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
17:30 hrs	Wild West Show at Girletz Ranch - sponsored by Leidos (Buses depart at 17:30 from front of hotel)	GIRLETZ RANCH

S PROGRAM AT A GLANCE

WEDNESDAY, 19 JULY 2023

7:00 hrs	SESSION CHAIR & SPEAKER BREAKFAST *for Wednesday + Thursday Presenters*	IMPERIAL 4/6/8
8:30 hrs	TECHNICAL SESSIONS Spacecraft and Instrument Thermal Systems - ICES101-A Advances in Thermal Control Technology - ICES104-C Thermal Control of Commercial and Exploration Spacecraft - ICES103-A Spacecraft Water/Air Quality: Maintenance and Monitoring - ICES406-A Human/Robotics System Integration - ICES405 Collaboration, Educational Outreach, and Public Engagement - ICES307-A Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development - ICES304-B Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-F Management of Air Quality in Sealed Environments - ICES504 Planetary and Spacecraft Dust Properties and Mitigation Technologies - ICES510-A Fire Safety in Spacecraft and Enclosed Habitats - ICES509-B	WALKER/BANNERMAN DOLL/HERALD DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
10:00 hrs	Networking Coffee Break	GRAND FOYER 2/3/4
10:30 hrs	TECHNICAL SESSIONS Spacecraft and Instrument Thermal Systems - ICES101-B Thermal Control of Commercial and Exploration Spacecraft - ICES103-B Spacecraft Water/Air Quality: Maintenance and Monitoring - ICES406-B Extravehicular Activity: Emerging Space Suit Technologies - ICES407-A Collaboration, Educational Outreach, and Public Engagement - ICES307-B Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development - ICES304-C Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-G Planetary and Spacecraft Dust Properties and Mitigation Technologies - ICES510-B Fire Safety in Spacecraft and Enclosed Habitats - ICES509-C	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
12:00 hrs	Lunch Break - Attendees on Own	
12:00 hrs	Committee Meeting Luncheons: IIC ICES International Committee ICS ICES Crew Systems Technical Committee	The Studio (2nd floor) The Gallery (2nd floor)
14:00 hrs	TECHNICAL SESSIONS Thermal Design of Cubesats, Nanosats, and Other Small Satellites - ICES107 Life Support Systems Engineering and Analysis - ICES501 Bioregenerative Life Support - ICES204-A Extravehicular Activity: Emerging Space Suit Technologies - ICES407-B Collaboration, Educational Outreach, and Public Engagement - ICES307-C Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development - ICES304-D Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-H Environmental Control of Commercial and Exploration Spacecraft - ICES305 Advanced Life Support Systems Control - ICES301 Advanced Technologies for In-Situ Resource Utilization - ICES308-A	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
16:00 hrs	Early Career Workshop sponsored by Oceaneering	THOMSONS SOCIAL HUB
18:15 hrs	Pre-Banquet Reception	GRAND FOYER 2/3/4
19:00 hrs	ICES 2023 Awards Banquet sponsored by Sierra Space	IMPERIAL BALLROOM
21:00 hrs	Dessert Reception sponsored by Paragon Space Development Corporation	ATRIUM + THOMSONS KITCHEN & BAR

THURSDAY, 20 JULY 2023

8:30 hrs	Early Morning Coffee Break	GRAND FOYER 2/3/4
9:00 hrs	TECHNICAL SESSIONS Thermal Testing - ICES203-A Thermal and Environmental Control Engineering Analysis and Software - ICES207-B Bioregenerative Life Support - ICES204-B Extravehicular Activity: Space Suit and Surface Mobility Operations - ICES403-A Reliability for Space Based Systems - ICES511 Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development - ICES304-E Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-I Radiation Issues for Space Flight - ICES503 Advanced Technologies for In-Situ Resource Utilization - ICES308-B	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 2 IMPERIAL 3 IMPERIAL 5 IMPERIAL 7 IMPERIAL 9
10:30 hrs	Networking Coffee Break	GRAND FOYER 2/3/4
11:00 hrs	TECHNICAL SESSIONS Thermal Testing - ICES203-B Thermal and Environmental Control Engineering Analysis and Software - ICES207-C Bioregenerative Life Support - ICES204-C Extravehicular Activity: Space Suit and Surface Mobility Operations - ICES403-B Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development - ICES304-F Physio-Chemical Life Support - Air Revitalization Systems - Technology and Process Development - ICES302-J Advanced Technologies for In-Situ Resource Utilization - ICES308-C	WALKER/BANNERMAN DOLL/HERALD STEPHEN AB IMPERIAL 1 IMPERIAL 3 IMPERIAL 5 IMPERIAL 9

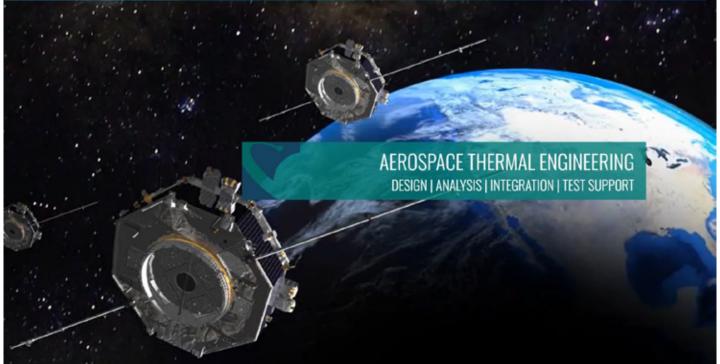
OPENING PLENARY SESSION

MONDAY, 17 JULY – 8:30 HRS IMPERIAL BALLROOM 4/6/8

JEREMY PARSONS -----+

Deputy Program Manager for the Exploration Ground Systems Program

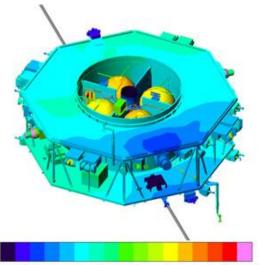
NASA Kennedy Space Center


Jeremy W. Parsons is the deputy manager of NASA's Exploration Ground Systems (EGS) Program at the John F. Kennedy Space Center in Florida. Appointed to this position in July 2019, he, along with the program manager, is responsible for leading the government and contractor team that is preparing the ground systems, infrastructure, facilities and processes required to support NASA's next-generation space launch systems and spacecraft and then processing those same vehicles for launch.

Parsons began his career with NASA in 2002 as a mission operations engineer for the International Space Station and Payload Processing Directorate at Kennedy. There, he was able to serve as the operations engineering lead for several space station missions, as well as payload launch and landing activities. Later, he was able to leverage that experience working for the Constellation Program leading cost and concept of operations assessments for vertical integration planning.

Parsons also spent time at NASA Headquarters supporting cost analysis for the Human Exploration Framework Team (HEFT). HEFT ultimately made many of the recommendations that resulted in the exploration architecture of the Space Launch System (SLS) and Orion vehicles. He was able to use his HEFT experience to serve as the NASA fellow to former U.S. Senator Bill Nelson, the chair of the Senate Science and Space Subcommittee. In this role, he served as the science and space advisor to the senator during a time of major transition at NASA. Upon his return from Washington D.C., Parsons assumed the role of technical manager, and eventually, branch chief of the Operations Integration Office within the Ground Systems Development and Operations Program at Kennedy.

Parsons has served in leadership positions across the EGS program, including deputy division chief of the project management division and senior project manager for launch accessories. In this capacity, he led the final fabrication and testing of the launch umbilicals for SLS and Orion. Later as the chief of the systems engineering and integration, he led the arm of the EGS program that acts as the primary technical integration voice within the program office. In this capacity, he was responsible for all requirements satisfaction, waivers, deviations, processes and coordination across SLS/Orion. He also assumed leadership of the Program Review Board and Joint Integration Control Board (PRB/JICB), which are the senior technical configuration control boards at the program and cross-program level.



Vertex Aerospace, LLC is an engineering services company headquartered in Maryland, specializing in thermal engineering design, analysis and test support for government and industry throughout the United States.

Vertex Aerospace with more than fifty years combined experience in aerospace thermal engineering maintains a broad knowledge and state of the art expertise in:

- Design, analysis, integration, test, and verification of satellite thermal control systems (TCS) that include spacecraft, instruments, avionics boxes and PCBs.
- The latest Thermal Desktop and SINDA/FLUINT software.
- Specifying flight thermal control system (TCS) hardware.
- Introducing design concepts, thermal control options and negotiating interfaces between subsystems.
- Developing TCS requirements, specifications, analysis reports, test plans, test procedures and test reports.
- Supporting thermal vacuum and thermal balance testing.
- Correlating thermal models to thermal balance data and flight data.

<-25-25 -21 -18 -14 -10 -6.7-3 0.674.3 0 12 15 19 23 26 30 >30

HYATT REGENCY CALGARY 700 Centre Street SE Calgary, Alberta, T2G 5P6, Canada T +1 403 717 1234 calgary.regency.hyatt.com @hyattcalgary

Â

FLOOR PLAN Second Floor

HYATT REGENCY CALGARY 700 Centre Street SE Calgary, Alberta, T2G 5P6, Canada T +1 403 717 1234 calgary.regency.hyatt.com @hyattcalgary

Â

FLOOR PLAN Third Floor

S MONDAY 17 JULY LATE MORNING

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES201-A: IIC Two-Phase Thermal Control Technology	ICES207-A: IIC/TECS Thermal and Environmental Control Engineering Analysis and Software	ICES404: ICS International Space Station ECLS: Systems
	ORGANIZERS: FRANK BODENDIECK, OHB SYSTEM AG STÉPHANE LAPENSÉE, EUROPEAN SPACE AGENCY GUANGHAN WANG, CANADIAN SPACE AGENCY FRANCISCO ROMERA, IBERESPACIO S.A. ALAIN CHAIX, THALES ALENIA SPACE	ORGANIZERS: HENRI BROUQUET, ITP AERO BRIAN BRIGGS, NASA JET PROPULSION LABORATORY MATTHEW VAUGHAN, EUROPEAN SPACE AGENCY HUME PEABODY, NASA GODDARD SPACE FLIGHT CENTER	ORGANIZERS: STEVEN BALISTRERI, THE BOEING COMPANY JOHN COVER, NASA JOHNSON SPACE
10:30	ICES-2023-5 Development of a Deployable, Freeze- Tolerant Condensing Radiator for Spaceborne Two-Phase Pumped Loops	ICES-2023-129 Novel Methods for Modeling Thermochromic Variable Emissivity Surfaces	ICES-2023-437 International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events 2022
	Thomas Conboy (Creare, LLC), Daniel Kromer (Creare, LLC) and Eric Sunada (Jet Propulsion Laboratory)	Derek Hengeveld (Redwire) and Jonathan Allison (Air Force Research Laboratory, Space Vehicles Directorate)	Steven Balistreri (The Boeing Company) and John Cover (NASA)
11:00	ICES-2023-440 Multi-criteria Optimization of Two-phase Thermal Control System of Space Vehicle	ICES-2023-77 Alternate Approach to Multi-Layer Insulation Modeling to Reduce Node Count	ICES-2023-97 Status of ISS Water Management and Recovery
	Gennadiy Gorbenko (Center of Technical Physics LLC), Rustem Turna (Center of Technical Physics LLC) and Artem Hodunov (National Aerospace University«Kharkov Aviation Institute»)	Hume Peabody (NASA-GSFC) and Chris Evans (NASA-GSFC)	Jill Williamson (NASA), Hieu Luong (The Boeing Company), Kristina Robinson (The Boeing Company) and Jonathan P. Wilson (NASA)
11:30	ICES-2023-332 Experimental Comparison of Two-Phase Heat Spreaders for Space Modular Electronics	ICES-2023-151 Improvement in Radiative Exchange Factor Calculations Using New GPU Dedicated Hardware	ICES-2023-435 Recent Major Constituent Analyzer Performance on the International Space Station
	Sai Kiran Hota (Advanced Cooling Technologies, Inc.), Kuan-Lin Lee (Advanced Cooling Technologies, Inc.), Greg Hoeschele (Advanced Cooling Technologies, Inc.), Tanner McFarland (Advanced Cooling Technologies, Inc.), Srujan Rokkam (Advanced Cooling Technologies, Inc.) and Richard Bonner (Advanced Cooling Technologies, Inc.)	Daniel Navajas Ortega (IDR/UPM), Javier Piqueras Carreño (IDR/UPM), Ignacio Torralbo Gimeno (IDR/UPM), Isabel Pérez-Grande (IDR/UPM) and David González Bárcena (IDR/UPM)	Ben Gardner (Collins Aerospace), Stephen Denson (Collins Aerospace), Mark Huffman (Collins Aerospace) and Tyler Zimmerman (Collins Aerospace)

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES401: ICS/AIAA LS&S Extravehicular Activity: Systems	ICES500-A: AIAA LS&S/AIChE Life Science/Life Support Research Technologies	ICES303-A: AIChE/IIC Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development
ORGANIZERS: KEITH SPLAWN, ILC DOVER BRIAN ALPERT, NASA JOHNSON SPACE CENTER ERIC VALIS, ILC DOVER	ORGANIZERS: BOB MORROW, SIERRA NEVADA CORPORATION JOHN WETZEL, SIERRA NEVADA CORPORATION JEAN HUNTER, CORNELL UNIVERSITY JOHN HOGAN, NASA AMES RESEARCH CENTER	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER MIKE FLYNN, NASA AMES RESEARCH CENTER ANDREW JACKSON, TEXAS TECH UNIVERSITY CESARE LOBASCIO, THALES ALENIA SPACE PETR ANDREYCHUK, RSC ENERGIA
ICES-2023-268 Compatibility between Exploration EVA System and Exploration Spacecrafts	ICES-2023-124 Legume Crop Testing for Space	ICES-2023-237 To Biocide or not to Biocide? Exploring the "No Biocide" Option in Spacecraft Potable Water Systems
Christine Kovich (NASA JSC Extravehicular Activity and Human Surface Mobility Program (EHP), (Mail Stop DI)/ The Aerospace Corporation) and Caitlin Meyer (NASA JSC Extravehicular Activity and Human Surface Mobility Program (EHP), (Mail Stop DI)/NASA)	Lashelle Spencer (Amentum), Jennifer Gooden (Amentum), Aaron Curry (Amentum), Takiyah Sirmons (Leidos Innovations Corporation), Raymond Wheeler (NASA) and Matthew Romeyn (NASA)	Mary Lou Nadeau (Aerodyne Industries LLC), Audry Almengor (JES Tech), Dean Muirhead (Barrios Technology), Mark Ott (NASA Johnson Space Center) and Michael Callahan (NASA Johnson Space Center)
ICES-2023-25 Requirements Engineering Scorecard and the Next-Generation Space Suit	ICES-2023-125 Novel Microgreen Crop Testing for Space	ICES-2023-87 Characterization of Microbes Present in Purge Pump and Separator Assembly Ground Testing
Michael Cabrera (Jacobs Technology), Steve Simske (Colorado State University) and Julia Worrell (NASA)	Lashelle Spencer (Amentum), Jennifer Gooden (Amentum), Aaron Curry (Amentum), Takiyah Sirmons (Leidos Innovations Corporation), Raymond Wheeler (NASA) and Matthew Romeyn (NASA)	Kristen Saban (NASA George C. Marshall Space Flight Center), Yo-Ann Velez Justiniano (NASA George C. Marshall Space Flight Center), David Long (NASA George C. Marshall Space Flight Center), Peyton Herrneckar (NASA) and Eric R. Beitle (Jacobs ESSCA)
ICES-2023-236 Using Virtual Reality to Envision Deployment of Spacesuit-Compatible Augmented Reality Displays for Lunar Surface Operations	ICES-2023-163 XROOTS ISS Tech Demo of Aeroponics and Hydroponics Nutrient Delivery in Microgravity	ICES-2023-2 Material Compatibility Study of Coated Metals to Maintain Biocidal Silver in a Spacecraft Potable Water System
Jacob Keller (Jacobs/NASA JSC), Lanssie Ma (KBR Wyle/ NASA Ames), Matthew Noyes (NASA JSC), Daren Welsh (KBR Wyle/NASA JSC), Lauren Brady (METECS /NASA JSC), Joseph Vacca (Tietronix/NASA JSC), Forrest Porter (Tietronix/NASA JSC), Skye Ray (Jacobs/NASA JSC, et al.	John Wetzel (Sierra Space), Robert Morrow (Sierra Space), Guillermo Tellez (Sierra Space) and Daniel Wyman (Sierra Space)	Rogelio Garcia Fernandez (NASA JSC - Jacobs Technology Inc.), Stacey Marshall (NASA JSC - Aerodyne Industries) and Niklas Adam (NASA JSC)

10:30

00:11

11:30

S MONDAY 17 JULY EARLY AFTERNOON

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES201-B: IIC Two-Phase Thermal Control Technology	ICES102-A: TECS Thermal Control for Planetary and Small Body Surface Missions	ICES402-A: ICS Extravehicular Activity: PLSS Systems
	ORGANIZERS: FRANK BODENDIECK, OHB SYSTEM AG STÉPHANE LAPENSÉE, EUROPEAN SPACE AGENCY GUANGHAN WANG, CANADIAN SPACE AGENCY FRANCISCO ROMERA, IBERESPACIO S.A. ALAIN CHAIX, THALES ALENIA SPACE	ORGANIZERS: JENNIFER MILLER, NASA JET PROPULSION LABORATORY GAJ BIRUR, NASA JET PROPULSION LABORATORY	ORGANIZERS: GREGORY QUINN, COLLINS AEROSPACE BRUCE CONGER, JACOBS GREG GUYETTE, COLLINS AEROSPACE
4:00	ICES-2023-11 Development and Testing of a Two-Phase Mechanically Pumped Loop for Active Antennae	ICES-2023-388 Dragonfly: Thermal Control System Design Overview	ICES-2023-160 The Development of Carbon-Based Sorbent Monoliths – a Review
	Henk Jan van Gerner, Johannes van Es, Ramon van den Berg (NLR), Anne Tailliez (AIRBUS Defence and Space), Andy Walker (ADS France), Charlton Castro, Cristina Ortega (AVS Added Value Solutions), Mónica Iriarte (AVS - Added Value Solutions, Elgoibar), et al.	Gary Holtzman, Jane He, Robert Coker, Hui Liu, Dahway Lin, Bruce Williams, Elisabeth Abel and Carl Ercol (The Johns Hopkins University Applied Physics Laboratory LLC)	Marek A. Wojtowicz (Advanced Fuel Research, INC), Joseph E. Cosgrove (Advanced Fuel Research, INC), Michael A. Serio (Advanced Fuel Research, INC), Andrew E. Carlson (Advanced Fuel Research, INC) and Cinda Chullen (NASA)
4:30	ICES-2023-85 Two Phase Capillary Evaporator Characterization for an Ammonia Cooling MPL Dedicated to Highly Dissipative Electronic	ICES-2023-389 Dragonfly: Lander Thermal System Modeling	ICES-2023-320 Nanoporous Silica as a Regenerable Sorbent for Potential Integration into NASA's Trace Contamination Control System
	Benjamin Lagier (IRT Saint Exupery Toulouse (AIRBUS Defence and Space)), Frédéric Boudesseul (IRT Saint Exupery Toulouse (THALES Alenia Space)) and Laure Baert-Authier (IRT Saint Exupery Toulouse (EPSYL))	Robert Coker, Gary Holtzman, Jane He, Hui Liu, Dahway Lin, Bruce Williams and Elisabeth Abel (The Johns Hopkins University Applied Physics Laboratory LLC)	Evgueni Kadossov (XploSafe LLC), Nick Materer, Allen Apblett (Oklahoma State University), Shoaib Shaikh, Mallikharjuna Komarneni, Michael Teicheira (XploSafe), Cinda Chullen (NASA), John Hostetler (Axiom Space) et al.
5:00	ICES-2023-57 Additively Manufactured Heat Pipe Performance and Modeling	ICES-2023-390 Dragonfly: Lander Thermal Testing	ICES-2023-399 Design and Performance Maturation of Regenerable Trace Contaminant Control for Removal of Ammonia and Other Trace Constituents
	Payton Batliner, Alex Pagano, John McHale, Natalie Walsh, Jacob Rome, Xueyong Kevin Qu and Glenn Bean (The Aerospace Corporation)	Dahway Lin, Bruce Williams, Gary Holtzman, Jane He, Robert Coker, Hui Liu and Elisabeth Abel (The Johns Hopkins University Applied Physics Laboratory LLC)	Christian Junaedi (Precision Combustion, Inc.), Kyle Hawley (Precision Combustion, Inc.), Codruta Loebick (Precision Combustion, Inc.) and Sinead Flanagan (Precision Combustion, Inc.)
5:30	ICES-2023-19 Fabrication and Evaluation of an Oscillating Heat Pipe with Check Valves by Metal Additive Manufacturing	ICES-2023-392 Dragonfly: Lander Computational Fluid Dynamics (CFD) Thermal Analysis on Titan Surface	ICES-2023-324 Test Bed for Evaluation of Sorbents Used in the Exploration Portable Life Support System
	Makiko Ando, Kousuke Tanaka, Atsushi Okamoto (Japan Aerospace Exploration Agency), Koutaro Matsushige (Nikkeikin Aluminium Core Technology Co, Ltd.), Kentaro Tanaka and Shinya Okuma (Azuma	Hui Liu, Jane He, Gary Holtzman, Bruce Williams, Dahway Lin, Robert Coker and Elisabeth Abel (The Johns Hopkins University Applied Physics Laboratory LLC)	Nick Materer (Oklahoma State University), Evgueni Kadossov (XploSafe), Allen Apblett (Oklahoma State University), Mallikharjuna Komarneni (XploSafe), Shoaib Shaikh (XploSafe), Michael Teicheira (XploSafe), Ciada Chullan (MSSA) and Kaleau Plaam (MSSA)

Cinda Chullen (NASA) and Kelsey Bloom (NASA)

Kinzoku Sangyo Co., Ltd.)

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES400-A: ICS Extravehicular Activity: Space Suits	ICES500-B: AIAA LS&S/AIChE Life Science/Life Support Research Technologies	ICES303-B: AIChE/IIC Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development
ORGANIZERS: JINNY FERL, ILC DOVER KRISTINE DAVIS, NASA JOHNSON SPACE CENTER KATYA ARQUILLA, MASSACHUSETTS INSTITUTE OF TECHNOLOGY	ORGANIZERS: BOB MORROW, SIERRA NEVADA CORPORATION JOHN WETZEL, SIERRA NEVADA CORPORATION JEAN HUNTER, CORNELL UNIVERSITY JOHN HOGAN, NASA AMES RESEARCH CENTER	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER MIKE FLYNN, NASA AMES RESEARCH CENTER ANDREW JACKSON, TEXAS TECH UNIVERSITY CESARE LOBASCIO, THALES ALENIA SPACE PETR ANDREYCHUK, RSC ENERGIA
ICES-2023-121 NASA Advanced Space Suit Pressure Garment System Status and Development Priorities 2023	ICES-2023-147 ECLSS Technology Roadmap at Spaceship FR	ICES-2023-41 Silver Electrolysis for Disinfection of Spacecraft Potable Water: 2023 Update
Shane McFarland (NASA), Richard Rhodes (NASA) and Don Campbell (KBR/NASA-JSC)	Gregory Navarro (CNES), Marie-Christine Desjean (CNES) and Alexis Paillet (CNES)	Phillip Hicks (Jacobs Technology), Niklas Adam (NASA) and Rogelio Garcia Fernandez (Jacobs Technology)
ICES-2023-240 Design for Custom Shaped Spacesuit, and Optimizing the Fit of Spacesuit Hard Upper Torsos	ICES-2023-224 Assessing the Recycling Potential of Cupriavidus necator for Space Travel: Production of SCPs and PHAs from Organic Wastes	ICES-2023-251 Silver Foam: A Novel Approach for Long-Term Passive Dosing of Biocide in Spacecraft Potable Water Systems – Update 2023
Will Green (University of North Dakota), Pablo De Leon (University of North Dakota), Jesse Rhoades (University of North Dakota) and Han Kim (Leidos, Inc)	Pierre Joris (TBI - INSA de Toulouse), Eric Lombard (TBI - CNRS), Gregory Navarro (CNES), Alexis Paillet (CNES), Nathalie Gorret (TBI - INRAE) and Stephane Guillouet (TBI - INSA Toulouse)	Tesia Irwin (The Bionetics Corporation), Angie Diaz, Jennifer Gooden, Mary Hummerick, Wenyan Li (Amentum), Nilab Azim (NASA Kennedy Space Center), Deborah Essumang (NASA Kennedy Space Center) and Michael Callahan (NASA Johnson Space Center)
ICES-2023-286 Exploration Extra-Vehicular Mobility Unit (xEMU) Composite Hard Upper Torso (CHUT) Development	ICES-2023-453 SCAMPI Project: Design of an Aquatic Closed Ecological System for Microgravity	ICES-2023-68 Mitigation of Silver Ion Loss from Solution by Polymer Coating of Metal Surfaces, Part V, and Related Developments
Shridhar Yarlagadda, David Roseman, Joseph Cipriani, Nicholas Shevchenko, John Tierney, John Gillespie Jr (Center for Composite Materials, University of Delaware), Mohan Parthasarathy (Altair Engineering), Richard Rhodes (NASA), Daniel Kim (NASA) et al.	Tarek Ben Slimane, Costanza Torchia, Patrick Grubbs, Jorge Galvan Lobo, Alvaro Ropero, Jorge Alberto Rodriguez, Joshua Smith, Anatole Berger (The Spring Institute for Forest on the Moon) et al.	John Vance (NASA AMES RESEARCH CENTER / KBR) and Lance Delzeit (NASA)
ICES-2023-33 Exploration Helmet Permanent Anti-fog Study		ICES-2023-71 Capacitively-Coupled Contactless Conductivity Detection (C4D) for In-Line Ionic Silver Monitoring
Kristine Davis (NASA) and Greg Trude (Air-Lock Inc)		John Vance (NASA AMES RESEARCH CENTER / KBR), John Abdou (KBR) and Lance Delzeit (NASA)

14:00

14:30

15:00

15:30

S MONDAY 17 JULY EARLY AFTERNOON

			IA	

ICES302-A: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development

ORGANIZERS:

MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS

14:00

ICES-2023-116 Status of the Four Bed Carbon Dioxide Scrubber ISS Technology Demonstration 2022-2023

James Knox (Knox Analytical Solutions Inc.), Gregory Cmarik (Jacobs Space Exploration Group, NASA/MSFC/ ES62) and John Garr (NASA Johnson Space Center)

14:30

ICES-2023-414 Test and Evaluation of the Next Generation Blower for FBC02 Scrubber

Kaitlin Oliver Butler (NASA Marshall Space Flight Center), Jim Knox (Jacobs Technology, Inc.), Rasish Khatri (Calnetix Technologies), Octavio Solis (Calnetix Technologies) and John Garr (Johnson Space Center)

15:00

ICES-2023-423 The FY2022 Development Status of CO2 Removal System for ISS Demonstration

Chiaki Yamazaki, Kentaro Hirai, Shotaro Futamura, Satoshi Matsumoto, Hideki Saruwatari (Japan Aerospace Exploration Agency), Ayako Yamamoto, Hidetoshi Nakagami, Mutsumu Nagase (Chiyoda Corporation) et al.

15:30

ICES-2023-119 Four Bed Carbon Dioxide Scrubber Engineering Development Unit Cabin Air Inlet Testing

James Knox (Knox Analytical Solutions Inc), Gregory Cmarik (Jacobs Space Exploration Group, NASA/MSFC/ ES62) and Arisa Waddle (Jacobs Space Exploration Group, NASA/MSFC/ES62)

IMPERIAL 7

ICES205-A: IIC/AIChE Advanced Life Support Sensor and Control Technology

ORGANIZERS:

ABHIJIT V. SHEVADE, NASA JET PROPULSION LABORATORY DARRELL L. JAN, NASA AMES RESEARCH CENTER TIMO STUFFLER, OHB SYSTEM AG

ICES-2023-92

ANITA-2 - the Advanced Multicomponent Air Analyser for ISS - First Year of Operation, Hardware Behaviour, Expected Lifetime and Reliability as well as Future Updates for ANITA-3

Lukas Pfeiffer (OHB), Michael Gisi (OHB System AG), Eckart Göhler (OHB), Roland Seurig (OHB System AG), Armin Stettner (OHB System AG), Atle Honne (SINTEF), Kristin Kaspersen (SINTEF), Jens Thielemann (SINTEF) et al.

ICES-2023-95

ANITA2 - the Advanced Multicomponent Air Analyser for ISS - Gas Measurement Results From the ISS Air in 2022

Atle Honne (SINTEF), Kristin Kaspersen (SINTEF), Kari Anne Hestnes Bakke (SINTEF), Anders Erik Liverud (SINTEF), Jens T. Thielemann (SINTEF), Brian Elvesæter (SINTEF), Michael Gisi (OHB System AG), Lukas Pfeiffer (OHB System AG) et al.

ICES-2023-465

Calibration and Performance of the Spacecraft Atmosphere Monitor, an Air Constituent Monitor for Human Spaceflight

Murray Darrach, Byunghoon Bae, Dejian Fu, Vachik Garkanian, Margie Homer, Richard Kidd, Cecile Jung-Kubiak, Hannes Kraus (Jet Propulsion Laboratory (JPL)) et al.

IMPERIAL 9

ICES502-A: AIAA LS&S Space Architecture

ORGANIZERS:

MAHSA ESFANDABADI, UNIVERSITY OF HOUSTON ANNE-MARLENE RÜEDE, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE ADAM OSWALD, BLUE ORIGIN GEORGI PETROV, SKIDMORE OWINGS & MERRILL SANDRA HAEUPLIK-MEUSBURGER, TU WIEN | SPACE-CRAFT ARCHITEKTUR

ICES-2023-270 Atlas of Habitats Beyond Earth. Architectural Solutions for Space Applications

Giacomo D'Amico (Mediterranea University of Reggio Calabria) and Marina Tornatora (Mediterranea University of Reggio Calabria)

ICES-2023-128 A Methodology for the Systematic Review of Space Architecture Concepts

Annika Rollock (Aurelia Institute), Danielle DeLatte (Aurelia Institute) and Ariel Ekblaw (Aurelia Institute)

ICES-2023-185 Architectural Commonalities of Critical Facilities (On and Off-Earth)

Tamalee Basu (IIEST, Shibpur)

ICES-2023-231 Design of Space Music Hall as a Module of Low Earth Orbit Space Station

Kazuki Toma (University of Tokyo), Shuto Takashita (University of Tokyo) and Shinichi Nakasuka (University of Tokyo)

NOTES +		

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES201-C: IIC Two-Phase Thermal Control Technology	ICES102-B: TECS Thermal Control for Planetary and Small Body Surface Missions	ICES402-B: ICS Extravehicular Activity: PLSS Systems
	ORGANIZERS: FRANK BODENDIECK, OHB SYSTEM AG STÉPHANE LAPENSÉE, EUROPEAN SPACE AGENCY GUANGHAN WANG, CANADIAN SPACE AGENCY FRANCISCO ROMERA, IBERESPACIO S.A. ALAIN CHAIX, THALES ALENIA SPACE	ORGANIZERS: JENNIFER MILLER, NASA JET PROPULSION LABORATORY GAJ BIRUR, NASA JET PROPULSION LABORATORY	ORGANIZERS: GREGORY QUINN, COLLINS AEROSPACE BRUCE CONGER, JACOBS GREG GUYETTE, COLLINS AEROSPACE
16:30	ICES-2023-158 3D Printed Wicks for Loop Heat Pipes	ICES-2023-109 Thermal Design and Control of the Main Electronic Box in Titan Environment for the DraMS Instrument	ICES-2023-27 Space Suit Portable Life Support System Oxygen Regulator History, Development, & Testing Results
	Rohit Gupta (Advanced Cooling Technologies, Inc.), Chien-Hua Chen (Advanced Cooling Technologies, Inc.) and William G. Anderson (Advanced Cooling Technologies, INC)	Daniel Bae (NASA GSFC), David Steinfeld (NASA GSFC), Franklin Robinson (NASA GSFC) and Samuel Nichols (ATA Aerospace)	Ryan Ogilvie (NASA Johnson Space Center), Colin Campbell (NASA Johnson Space Center), Ioannis Hatziprokopiou (Mission Systems Division, Eaton), Robert Walz (Mission Systems Division, Eaton) and James Rogers (Mission Systems Division, Eaton)
17:00	ICES-2023-430 Ammonia Loop Heat Pipe with Thin Evaporator Fabricated by Additive Manufacturing	ICES-2023-337 Demonstration of Ice-Extraction and Ice- Collection System for Lunar Ice Miners	ICES-2023-64 xPLSS Structural Backplate Design, Manufacture, and Test Overview
	Hosei Nagano (Nagoya Univ), Satoshi Kajiyama (Nagoya Univ), Kazuhiro Nakazawa (Nagoya Univ), Takeshi Tsuru (Kyoto Unibv) and Yuki Akizuki (Japan Aerospace Exploration Agency)	Kuan-Lin Lee, Sai Kiran Hota, Quang Truong, Mojtaba Edalatpour, Srujan Rokkam (Advanced Cooling Technologies, Inc.) and Kris Zacny (Honeybee Robotics)	Sarah Hargrove (NASA) and Sean Miller (NASA)
17:30	ICES-2023-79 Prototype of Loop Heat Pipe with Electrohydrodynamic Conduction Pump for Active Shutdown Function	ICES-2023-472 DAVINCI EDU Descent Sphere Thermal Insulation Test Results and Model Correlation	ICES-2023-53 Development of a Multi-Gas Microsensor Array for the Exploration Portable Life Support System
	Masahito Nishikawara (Toyohashi university of technol- ogy), Takeshi Miyakita (Japan Aerospace Exploration Agency), Genki Seshimo, Hiroshi Yokoyama and Hideki Yanada (Toyohashi university of technology)	Rommel Zara (Vertex Aerospace/GSFC) and Evan Alexander (Vertex Aerospace/GSFC)	James Makel (Makel Engineering Inc.), Richard Kokoletsos (Makel Engineering Inc.), Darby Makel (Makel Engineering Inc.), Ryan Ogilvie (NASA Johnson Space Center) and Sepehr Bastami (NASA Langley Research Center)

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES400-B: ICS Extravehicular Activity: Space Suits	ICES506-A: AIAA LS&S Human Exploration Beyond Low Earth Orbit: Missions and Technologies	ICES303-C: AIChE/IIC Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development
ORGANIZERS: JINNY FERL, ILC DOVER KRISTINE DAVIS, NASA JOHNSON SPACE CENTER KATYA ARQUILLA, MASSACHUSETTS INSTITUTE OF TECHNOLOGY	ORGANIZERS: DAN BARTA, NASA JOHNSON SPACE CENTER JAMES CHARTRES, MILLENNIUM ENGINEERING & INTEGRATION (MEI) DAWN R. WHITAKER, PURDUE UNIVERSITY	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER MIKE FLYNN, NASA AMES RESEARCH CENTER ANDREW JACKSON, TEXAS TECH UNIVERSITY CESARE LOBASCIO, THALES ALENIA SPACE PETR ANDREYCHUK, RSC ENERGIA
ICES-2023-466 Development of ARGOS Offloading Assessments and Methodology for Lunar EVA Simulations	ICES-2023-368 Utilizing Gaps and Performance Measures to Inform NASA Environmental Control and Life Support Systems and Crew Health and Performance Technology Decisions	ICES-2023-175 Hybrid Life Support System Full Scale Testing: Integrated Bioreactor-Desalination Long Term Testing
Sarah Jarvis (NASA/Aegis Aerospace), Richard Rhodes (NASA), Linh Vu (NASA/Aegis Aerospace), Garima Gupta (NASA/Aegis Aerospace), Elizabeth Benson (NASA/KBR), Han Kim (NASA/Leidos) and Sudhakar Rajulu (NASA)	James Broyan (NASA-HQ), Andrew Abercromby (NASA) and Alexander Burg (Bryce Space and Technology)	Ghaem Hooshyari (Texas Tech University), Arpita Bose (Texas Tech University), Jessica La-Grenade (Texas Tech University), Siddhi Kad (Texas Tech University), Michael Callahan (NASA) and William Jackson (Texas Tech University)
ICES-2023-257 Testing Fit, Mobility, and Comfort of the Exploration Pressure Garment Subsystem (xPGS)	ICES-2023-312 NASA Environmental Control and Life Support Technology Development for Exploration: 2022-2023 Status	ICES-2023-96 CDC Bioreactor Configuration Method for Volume Level Control with Controlled Inlet and Outlet Flow
Richard Rhodes (NASA), Christine Flaspohler (Jacobs Technology) and Shane McFarland (NASA)	Walter Schneider (NASA), Arthur Brown (NASA), Chris Allen (NASA), Melissa McKinley (NASA), Imelda Stambaugh (NASA), Alesha Ridley (NASA), Daniel Barta (NASA) and Daniel Gazda (NASA)	Connor Murphy (Jacobs Space Exploration Group), Eric Beitle (Jacobs Space Exploration Group) and Yo-Ann Velez Justiniano (NASA George C. Marshall Space Flight Center)
ICES-2023-58 Exploration Extravehicular Mobility Unit (xEMU) Pressure Garment System (PGS) Cycle Testing Overview and Results	ICES-2023-259 International Space Station as a Testbed for Exploration Environmental Control and Life Support Systems - 2023 Status	ICES-2023-90 Analysis of CDC Bioreactor Internal Thermal Measurements and Sample Coupon Temperatures
Christine Flaspohler (NASA) and Richard Rhodes (NASA)	Alesha Ridley (NASA), Christopher Brown (NASA), John Garr (NASA), Lynda Gavin (NASA), David Hornyak (NASA), Katherine Toon (NASA), Paul Caradec (Leidos Innovations Corporation) and Allen Williams (Leidos Innovations Corporation)	Eric Beitle (Jacobs Space Exploration Group), Connor Murphy (Jacobs Space Exploration Group), Yo-Ann Velez Justiniano (NASA George C. Marshall Spaceflight Center) and Darla Goeres (Center for Biofilm Engineering, Montana State University)

16:30

17:00

17:30

S MONDAY 17 JULY LATE AFTERNOON

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-B: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development	ICES205-B: IIC/AIChE Advanced Life Support Sensor and Control Technology	ICES502-B: AIAA LS&S Space Architecture
	ORGANIZERS: MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS	ORGANIZERS: ABHIJIT V. SHEVADE, NASA JET PROPULSION LABORATORY DARRELL L. JAN, NASA AMES RESEARCH CENTER TIMO STUFFLER, OHB SYSTEM AG	ORGANIZERS: MAHSA ESFANDABADI, UNIVERSITY OF HOUSTON ANNE-MARLENE RÜEDE, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE ADAM OSWALD, BLUE ORIGIN GEORGI PETROV, SKIDMORE OWINGS & MERRILL SANDRA HAEUPLIK-MEUSBURGER, TU WIEN SPACE- CRAFT ARCHITEKTUR
16:30	ICES-2023-308 Demonstration of an Electrochemically- Driven Multi-Cell Stack Using Shorted Anion Exchange Membranes for Spacecraft Cabin Air Revitalization	ICES-2023-470 SWIM: Progress Report on the Organics Detection from Water	ICES-2023-182 Anthropocentric Habitation of Mars Through Parametric Design
	Marco Colin Martinez (University of Delaware), Stephanie Matz (University of Delaware), Brian Setzler (University of Delaware) and Yushan Yan (University of Delaware)	Dragan Nikolic (Jet Propulsion Laboratory), Stojan Madzunkov (JPL) and Jurij Simcic (Jet Propulsion Laboratory)	Chi Lan Huynh, Erin Quigley, Logan Miller and Christopher Hisle (Sasakawa International Center for Space Architecture)
17:00	ICES-2023-376 Spacecraft Carbon Dioxide Deposition Full-Scale System: Design, Analysis, Build and Test	ICES-2023-83 Spacecraft Water Analysis with Nanopore (SWAN)	ICES-2023-253 Drop the Base: Biological, ISRU-Based Aleatory Construction System for Martian Habitats
	Pranav Jagtap (NASA Ames Research Center), Grace Belancik (NASA Ames Research Center), Michael Schuh (NASA Ames Research Center), Tiago Costa (NASA), Kelby Gan (NASA Ames Research Center) and Jason Samson (NASA Ames Research Center)	Zehui Xia (Goeppert LLC), Brian DiPaolo (Goeppert LLC) and David Niedzwicki (Goeppert LLC)	Monika Brandić Lipińska, Martyn Dade-Robertson (Hub for Biotechnology in the Built Environment, Newcastle University), Meng Zhang (Hub for Biotechnology in the Built Environment, Northumbria University) and Lynn J. Rothschild (NASA Ames Research Center)
17:30	ICES-2023-70 A Cryogenic CO2 Scrubber with an Integrated Switchable Heat Pipe	ICES-2023-256 Portable Tunable Laser Spectrometer (PTLS) for Human Exploration: Update on Lasers and Mesh Networking	ICES-2023-294 Multi-layered 3D Printed Mars Habitat Proposal, Analysis of Habitability Requirements and Autonomous Building Technologies from the NEST Team's Design at the NASA Centennial Challenge
	Weibo Chen (JPL), Luis Fonseca Flores (JPL) and Scott Roberts (JPL)	Lance Christensen, Kamjou Mansour (Jet Propulsion Laboratory, California Insititute of Technology), Alexander Hart, Benedito Fonseca (Northern Illinois University), Yuebin Ning (Norcada Inc.), Simon Wingar (National Research Council Canada), Nakeeran Ponnampalam, Tran Tran (Norcada Inc.) et al.	Jose-Miguel Armijo-Vielma (Georgia Institute of Technology), José Hernández Vargas (KTH Royal Institute of Technology) and Priyanka Naidu (New York City Architecture Biennial)

Engineering a sustainable future

We are working on innovative solutions for a sustainable future of flight. Learn more at boeing.com/space

RECEPTION STUDEN IMPERIAL

4/6/8

MONDAY, 17 JULY

18:00-19:30 HRS

SPONSORED BY BOEING

HUMAN LANDING SYSTEM ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEM RESEARCH AND DESIGN

Chad Pflieger, Cody Bahan, Nathan Foote, Kathleen Laughton, James Nabity, Aanshi Panchal, Stuart Tozer and Samuel Trux (University of Colorado - Boulder)

RETURN ON INVESTMENT OF EMERGENT TECHNOLOGY FOR DEEP SPACE HABITATS: A HOME CASE STUDY

Annika Rollock and David Klaus (University of Colorado, Boulder)

ANALYSIS OF OFF-GASES FROM PACKED BED ANAMMOX **REACTORS FOR SPACE HABITATION**

Brennan Riley and Andrew Jackson (Texas Tech University)

ENSURING SATISFACTORY ECLSS DATA GENERATION TO TEST MACHINE LEARNING ALGORITHMS FOR ANOMALY DETECTION **AND DIAGNOSTICS**

Samuel Eshima and James Nabity (University of Colorado Boulder)

CHARACTERIZING THE TRADE SPACE FOR INCORPORATING EMERGING TECHNOLOGIES INTO DEEP-SPACE 'SMART' HABITATS: NEEDS AND OPPORTUNITIES

Sophia Zaccarine and David Klaus (University of Colorado at Boulder)

NONTHERMAL PLASMA WATER TREATMENT FOR THE PREVENTION AND MITIGATION OF BIOFILM IN HYDROPONIC PLANT-GROWING SYSTEMS.

Chelsea Tischler and John Foster (University of Michigan, Ann Arbor)

ECO-DESIGN OF AN INHABITED SPACE BASE ON THE MOON'S **SURFACE**

Augustin Gallois, Stéphanie Lizy-Destrez, Jean-Charles Chaudemar (Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)), Estelle Moraux (Institut de Planétologie et d'Astrophysique de Grenoble (IPAG - CNRS)), Gregory Navarro, Alexis Paillet and Julien Rey (Centre National d'Études Spatiales (CNES))

ANTHROPOCENTRIC HABITATION OF MARS THROUGH PARAMETRIC DESIGN

Chi Lan Huynh, **Chris Hisle,** Erin Quigley and **Logan Miller** (Sasakawa International Center for Space Architecture)

PHYSICS BASED MACHINE LEARNING ALGORITHM TO VALIDATE INVERSION TECHNIQUE TO DETERMINE PARTICLE CHARACTERISTICS USING A MULTIWAVELENGTH MULTIANGLE PARTICULATE MATTER SENSOR

Shruti Choudhary, Pratim Biswas (University of Miami), Tandeep Chadha, Jiaxi Fang (Applied Particle Technology), Marit Meyer (Northrop Grumman Corporation), Paul Mudgett (National Aeronautics and Space Administration Johnson Space Center) and Claire Fortenberry (National Aeronautics and Space Administration Genn Research Center)

THERMAL RADIATION CONTROL IN SPACE USING HOLLOW MICROSPHERE-BASED COATINGS

Hoyeon Park (UC Irvine)

MANUFACTURING AN EVA SPACESUIT USING THE DIGITAL THREAD: AUTOMATIC PATTERN GENERATION FROM A DIGITAL BODY

Abigail Maltese and Bonnie J. Dunbar (Texas A&M Aerospace Engineering)

ASSESSING METABOLIC COST ACROSS SPEEDS, INCLINES, AND GRAVITY LEVELS WITH THE VERTICAL OFFLOADING POWER DEVICE

Logan Kluis, Callie Wynn and Ana Diaz-Artiles (Texas A&M University)

QUALITATIVE EVALUATION OF THE GRAVITY LOADING COUNTERMEASURE SKINSUIT DURING EXERCISE AND FUNCTIONAL ACTIVITY IN LOW-EARTH ORBIT

Rachel Bellisle (Harvard-MIT Health Sciences and Technology; Draper Scholar Program at The Charles Stark Draper Laboratory, Inc.), Katya Arquilla, Lonnie Petersen, Dava Newman (Department of Aeronautics and Astronautics, Massachusetts Institute of Technology) and Andrea Webb (The Charles Stark Draper Laboratory, Inc.)

BIOMASS QUANTIFICATION METHODS FOR THE STUDY OF MICROBIAL FOULING IN THE INTERNATIONAL SPACE STATION WATER PROCESSOR ASSEMBLY

Micah Hickethier, Elizabeth Sandvik (Center for Biofilm Engineering) and Phil Stewart (Department of Chemical and Biological Engineering Montana State University)

COPOLYMER NANOFIBER EXPERIMENTATION FOR BIOFILM CONTAMINATION PREVENTION IN THE WATER PROCESSOR ASSEMBLY ON THE INTERNATIONAL SPACE STATION

Emma Johnson, Arnav Gonella (Georgia Institute of Technology), Bailey Hodakievic, Samiksha Chandran, Jacob Weinstein and Leidy Rosario Duran (University of Houston)

PILOT TESTING OF THE EFFECTS OF SIMULATED PARTIAL GRAVITY ON ANKLE PROPRIOCEPTION

Nicole McGaa, Rachel Bellisle, Dava Newman (MIT), Gordon Wadding and Ashleigh Marchant (University of Canberra)

HOLEY SILICON-BASED THERMOPILES FOR HIGH-SENSITIVITY BROADBAND THERMAL DETECTION

Jiahui Cao and Jaeho Lee (University of California, Irvine)

TOWARDS A SIMULATION METHODOLOGY FOR EARTH-INDEPENDENT ANOMALY RESPONSE IN DEEP SPACE HABITATS

Patrick Pischulti and David Klaus (University of Colorado Boulder)

TUESDAY 18 JULY EARLY MORNING

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES201-D: IIC ICES206: IIC/TECS 201: Two-Phase Thermal Control Technology 206: Crewed Orbiting Infrastructures, Habitats, Space Station and Payload Thermal Control	ICES102-C: TECS Thermal Control for Planetary and Small Body Surface Missions	ICES402-C: ICS Extravehicular Activity: PLSS Systems
	201 ORGANIZERS:206 ORGANIZERS:FRANK BODENDIECK,PATRICK OGER, AIRBUSOHB SYSTEM AGMATTEO LAMANTEA, THALESSTÉPHANE LAPENSÉE,ALENIA SPACEEUROPEAN SPACE AGENCYDIEGO MUGURUSA,GUANGHAN WANG,COLLINS AEROSPACECANADIAN SPACE AGENCYDALE WINTON, HONEYWELLFRANCISCO ROMERA,INTERNATIONALIBERESPACIO S.A.INTERNATIONALALENIA SPACESame and a standard and	ORGANIZERS: JENNIFER MILLER, NASA JET PROPULSION LABORATORY GAJ BIRUR, NASA JET PROPULSION LABORATORY	ORGANIZERS: GREGORY QUINN, COLLINS AEROSPACE BRUCE CONGER, JACOBS GREG GUYETTE, COLLINS AEROSPACE
8:00	ICES-2023-213 (ICES201) Development and Characterization of Additive Manufacturing Flat Loop Heat Pipe Evaporator	ICES-2023-238 MMX Rover: Thermal Control Design and Validation of a Rover on Phobos Martian Moon	ICES-2023-35 Ventilation Heat Exchanger/Flow Meter for xPLSS
	Javier Corrochano (Arquimea Space), Francisco Romera (Arquimea Space), Carlos Galleguillos (FADA-CATEC), Antonio Periñán (FADA-CATEC), Fernando Lasagni (FADA- CATEC), Marco Gottero (Thales Alenia Space Italia) and Stéphane Lapensée (ESA-ESTEC)	Maxime André (CNES)	Michael Izenson (Creare Inc.), Adam Niblick (Creare LLC), Sheldon Stokes (Creare LLC) and Tessa Rundle (NASA)
8:30	ICES-2023-159 (ICES201) Operating Characteristics of Cryogenic Loop Heat Pipes at Different Filling Pressures		ICES-2023-26 Space Suit Portable Life Support System Thermal Control Valve Ball Design
	Takeshi Yokouchi (Institute of Fluid Science,Tohoku University), Xinyu Chang (Institute of Fluid Science), Kimihide Odagiri (Japan Aerospace Exploration Agency), Hiroyuki Ogawa (Japan Aerospace Exploration Agency), Hosei Nagano (Department of Mechanical System Engineering, Nagoya University) and Hiroki Nagai (Institute of Fluid Science)		Ryan Ogilvie (NASA Johnson Space Center), Sean Miller (NASA Johnson Space Center) and Tessa Rundle (NASA Johnson Space Center)
9:00	ICES-2023-198 (ICES201) Sublimation Cooling Technology for CubeSat Thermal Control	ICES-2023-135 Thermal Performance of the Perseverance Rover During Mars Surface Operations	ICES-2023-267 SERFE PLSS Component Lessons Learned from ISS
	Janine Moses (University of California, Davis) and Stephen Robinson (University of California, Davis)	Bailey Cassler (Jet Propulsion Laboratory, California Institute of Technology) and Emma Nelson (Jet Propulsion Laboratory, California Institute of Technology)	Alicia Contreras-Baker (NASA/Jacobs), David Westheimer (NASA) and Chane Sladek (NASA/Jacobs)
9:30	ICES-2023-131 (ICES206) Novel Vapor Chambers for Heating and Cooling of Advanced Sorption Systems		
	Haley Myer (Advanced Cooling Technologies) and Michael C. Ellis (Advanced Cooling Technologies, INC)		

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES400-C: ICS Extravehicular Activity: Space Suits	ICES506-B: AIAA LS&S Human Exploration Beyond Low Earth Orbit: Missions and Technologies	ICES303-D: AIChE/IIC Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development
ORGANIZERS: JINNY FERL, ILC DOVER KRISTINE DAVIS, NASA JOHNSON SPACE CENTER KATYA ARQUILLA, MASSACHUSETTS INSTITUTE OF TECHNOLOGY	ORGANIZERS: DAN BARTA, NASA JOHNSON SPACE CENTER JAMES CHARTRES, MILLENNIUM ENGINEERING & INTEGRATION (MEI) DAWN R. WHITAKER, PURDUE UNIVERSITY	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER MIKE FLYNN, NASA AMES RESEARCH CENTER ANDREW JACKSON, TEXAS TECH UNIVERSITY CESARE LOBASCIO, THALES ALENIA SPACE PETR ANDREYCHUK, RSC ENERGIA
ICES-2023-34 Initial Testing of the Exploration Extravehicular Mobility Unit (xEMU) in Lunar Environment Simulation at the Neutral Buoyancy Lab (NBL) in 2022	ICES-2023-265 Environmental Control and Life Support (ECLS) System Options for Mars Transit and Mars Surface Missions	ICES-2023-100 Development and Testing of a New Partial Gravity Urine Processor Design and Urine Pretreatment
Kristine Davis (NASA), Zachary Tejral (NASA), Tommy Keomany (NASA) and Linh Vu (MEI Technologies)	Zach Bryant (Jacobs Space Exploration Group), Andrew Choate (Jacobs Space Exploration Group) and David Howard (NASA Marshall Space Flight Center)	Jill Williamson (NASA), Colton Caviglia (NASA), Yo-Ann Velez Justiniano (NASA), Chelsea McCool (ESSCA) and Chelsi Cassilly (ESSCA)
ICES-2023-37 Establishing Standardized Test Methods for Evaluating Space Suit Gloves	ICES-2023-321 NextSTEP Appendix A Modular ECLSS Effort Lessons Learned	ICES-2023-292 Brine Processor Assembly: A Year of Successful Operation on the International Space Station
Robert Jones (NASA), Richard Rhodes (NASA), Morgan Abney (NASA NESC), Timothy Brady (NASA NESC), Shane McFarland (NASA), Joseph Settles (NASA), Chanel Stephens (NASA), Andrew Hoyle (NASA) et al.	James Clawson (NASA HQ (Stellar Solutions, Inc)), Daniel Barta (NASA), Walter Schneider (NASA), Marlon Cox (NASA) and David Howard (NASA)	Stephanie Boyce, Connor Joyce, Patrick Pasadilla, Philipp Tewes (Paragon Space Development Corporation), Jonathan P. Wilson (NASA MSFC), Jill Williamson (NASA MSFC) and Katherine Toon (NASA JSC).
	ICES-2023-451 Lunar SmartHab Mission Operations and Crew Day-In-The-Life	ICES-2023-45 From Waste to Water - An Integrated System to Recover Potable Water from Urine and Condensate
	Kenneth Pritchard (Purdue University), Luca Vaccino (Purdue University), Xiaoyu Liu (Purdue University), Dawn Whitaker (Purdue University), Shirley Dyke (Purdue University) and Brian Joyal (Veridiam, Inc.)	Ingrid Helgeland (Aquaporin A/S), Maja Bender Tommerup (Danish Aerospace Company), Jason A. Ogden (Danish Aerospace Company) and Jörg Vogel (Aquaporin A/S)
	ICES-2023-255 NASA Crew Health & Performance Capability Development for Exploration: 2022 to 2023 Overview	ICES-2023-94 Status of ISS Biofilm Management Testing for the Water Processor Assembly
	Andrew Abercromby (NASA), Grace Douglas (NASA JSC), Kent Kalogera (NASA), Karina Marshall-Goebel (NASA), Jeffrey Somers (NASA), Rahul Suresh (NASA), Moriah Thompson (NASA), Scott Wood (NASA) et al.	Yo-Ann Velez Justiniano (NASA George C. Marshall Space Flight Center), Iulian Cioanta (Sanuwave), Eric R. Beitle (Jacobs Space Exploration Group), Connor P. Murphy (Jacobs Space Exploration Group), Cary McGhin (Sanuwave) and John Jackson (Sanuwave)

8:00

8:30

9:00

9:30

TUESDAY 18 JULY EARLY MORNING

IMPERIAL 5

ICES302-C: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development

ORGANIZERS:

PATRICK OGER, AIRBUS

MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS

8:00

ICES-2023-103 Carbon Dioxide Removal by Ionic Liquid System (CDRILS): Ground Prototype Testing and Trace Contaminant Removal Integration

Rebecca Kamire, Stephen F. Yates, Phoebe Henson, Matthew J. Kayatin, Jack Ford, Emir Rahislic, Mark Triezenberg, Meghan Pipitone (Honeywell Aerospace) et al.

8:30

ICES-2023-143 CO2 Capture with Supported Ionic Liquid Membranes for ECLSS and ISRU: Progress, Performance, and Potential

Bharath Tata (University of Colorado), Cody Bahan (University of Colorado) and James Nabity (University of Colorado Boulder)

9:00

ICES-2023-137 Update of the Ground-Based Liquid Amine Horizontal Contactor Test System

Tiago Costa (NASA), Lisa Chu (NASA), Lawrence Barrett (NASA), Grace Belancik (NASA) and Jason Samson (NASA)

9:30

ICES-2023-358 Evaluation of Alternative Liquid Sorbents and Additives for Spacecraft CO2 Capture

Grace Belancik (NASA Ames Research Center), Lisa Chu (Barrios Technology), Tiago Costa (KBR Wyle) and Mathangi Soundararajan (KBR Wyle)

IMPERIAL 7

ICES205-C: IIC/AIChE Advanced Life Support Sensor and Control Technology

ORGANIZERS

ABHIJIT V. SHEVADE, NASA JET PROPULSION LABORATORY DARRELL L. JAN, NASA AMES RESEARCH CENTER TIMO STUFFLER, OHB SYSTEM AG

ICES-2023-302

Orion LAMS Laser Absorption Spectrometer for Human Spaceflight - Artemis 3 Flight Unit Build and Test Results

Jason Pohly (Romach Technologies), Lance Christensen (Jet Propulsion Laboratory, California Institute of Technology), Kamjou Mansour (Jet Propulsion Laboratory, California Institute of Technology), David Roe (Dynetics), John Vaughan (Dynetics) and Cody Erb (Dynetics)

ICES-2023-373

Evaluation of a New Commercial Catalyst for CO Oxidation for Environmental Control and Life Support Applications

Sudheera Yaparatne, Madison McCarthy, Louis Nicoloro, Neil Fisher (Department of Civil and Environmental Engineering, University of Maine), John Graf (Johnson Space Center), Lawrence Barrett, Oageng George (Jacobs JETS Contract) and Onur Apul (Department of Civil and Environmental Engineering, University of Maine)

ICES-2023-301 Feasibility Testing of a Thermal Dispersion Flowmeter with External Signal Conditioning for Health Monitoring of Liquid and Gas flows

Diego Mugurusa (Collins Aerospace), Nicholas Van Derzee (Collins Aerospace) and James Davis (Collins Aerospace)

IMPERIAL 9

ICES502-C: AIAA LS&S Space Architecture

ORGANIZERS:

MAHSA ESFANDABADI, UNIVERSITY OF HOUSTON ANNE-MARLENE RÜEDE, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE ADAM OSWALD, BLUE ORIGIN GEORGI PETROV, SKIDMORE OWINGS & MERRILL SANDRA HAEUPLIK-MEUSBURGER, TU WIEN | SPACE-CRAFT ARCHITEKTUR

ICES-2023-149 Definition of a Reusable Lunar Habitat to Extend Exploration Range

Gregory Navarro (CNES), Alexis Paillet (CNES), Sebastien Barde (CNES) and Marie-Christine Desjean (CNES)

ICES-2023-172

Swarm Habitat: Lava Tube Base Design with Non-Orthogonal Modular Coordination of The Truncated Octahedral Modules

Takashi Mizuguchi (Keio University) and Yashushi Ikeda (The University of Tokyo)

ICES-2023-319 Practical Lunar Surface Site Selection Criteria to Optimize Habitat Environmental Control

William O'Hara (Blue Origin LLC) and Jennifer Matty (Blue Origin LLC)

ICES-2023-454 Developing an Integrated Logistics Infrastructure for Lunar Surface Habitats

David Akin (University of Maryland)

ΝΛΤΓΟ	
NOTES +	

TUESDAY 18 JULY LATE MORNING

WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
ICES202-A: IIC Satellite, Payload, and Instrument Thermal Control	ICES104-A: TECS/IIC Advances in Thermal Control Technology	ICES513-A: AIAA LS&S Human Health and Performance Analysis
ORGANIZERS: JOHANNES VAN ES, NLR ROMAIN PEYROU-LAUGA, EUROPEAN SPACE AGENCY DAVID VALENTINI, THALES ALENIA SPACE HIROYUKI OGAWA, JAPAN INSTITUTE OF SPACE AND ASTRONAUTICAL SCIENCE ALBERTO CORBELLI, SITAEL	ORGANIZERS: JEFF FARMER, NASA MARSHALL SPACE FLIGHT CENTER YANN CERVANTES, CNES PHILIPP B. HAGER, EUROPEAN SPACE AGENCY ANGEL ALVAREZ-HERNANDEZ, NASA JOHNSON SPACE CENTER CHRIS MASSINA, NASA JOHNSON SPACE CENTER WILLIAM JOHNSON, NASA MARSHALL SPACE FLIGHT CENTER JEAN-PAUL DUDON, THALES ALENIA SPACE	ORGANIZERS: CLAAS OLTHOFF, AIRBUS ANA DIAZ ARTILES, TEXAS A&M UNIVERSITY
ICES-2023-122 Thermal Design of the Hyperspectral Instrument of the CHIME Mission	ICES-2023-23 Thermal Modeling of a Novel Air- Cooled Temperature Swing Adsorption Compressor (AC-TSAC)	ICES-2023-98 An Investigation into the Effect of Liquid Accumulation on Thermo-Physiologic State usin an Advanced Moisture Model Coupled with a High Resolution Human Thermal Model
Victor Cleren (ESA) and Niels Schibilla (OHB)	Hannah Alpert (NASA Ames Research Center), Keith Peterson (NASA Ames Research Center), Tra-My Justine Richardson (NASA Ames Research Center), Quinton Dzurny (Georgia Institute of Technology) and G. P. Peterson (Georgia Institute of Technology)	Timofey Golubev (ThermoAnalytics, Inc.), Mark Hepokoski (ThermoAnalytics, Inc.), Kevin Ward (W. L. Gore and Associates), Joel Coffel (W. L. Gore and Associates) and Hee Jong Song (NASA Johnson Space Center)
ICES-2023-139 TuMag Optical Unit Thermal Control for a Stratospheric Balloon-borne Mission	ICES-2023-398 Design, Modeling, and Initial Characterization of a Subscale Variable Conductance Radiator for CO2 Deposition System in Deep Space Transit	ICES-2023-315 Review of Human Thermoregulation Models, Validation Methods, and Selecter Responses to Gravity Dose Analogs
Alejandro Gonzalo, Manuel Reina, Antonio Sánchez, Ana Fernández-Medina, María Cebollero, Hugo Laguna, David Escribano and Alberto Álvarez-Herrero (Instituto Nacional de Técnica Aeroespacial (INTA))	Alexander Sarvadi (University of North Texas), Huseyin Bostanci (University of North Texas), Cable Kurwitz (Texas A&M University) and Grace Belancik (NASA Ames Research Center)	Maddie Haas (Texas A&M University) and Bonnie Dunbar (Texas A&M University)
ICES-2023-4 JUICE (JUpiter ICy moon Explorer) Thermal Model Correlation and Final Flight Thermal Predictions	ICES-2023-335 Development of Flight Demonstration Hot Reservoir Variable Conductance Heat Pipes for Microgravity Testing and Future Lunar Landers and Surface Systems	ICES-2023-141 Towards Personalized Digital Twin as Clinical Decision Support Tool for Astrona Medication : a Review of Literature
Romain Peyrou-Lauga (ESA) and Gabriel Roca (Airbus Defence and Space)	Kuan-Lin Lee, Calin Tarau, Ramy Abdelmaksoud, William G. Anderson (Advanced Cooling Technologies INC), Chirag Kharangate (Case Western Reserve University) and Yasuhiro Kamotani (Case Western Reserve University)	Laure Boyer (MEDES/CNES), Samuel Baroudi (ExactCure), Sylvain Benito (ExactCure), Matthieu Basset (ExactCure), Alexis Paillet (CNES), Anne Pavy-Le Traon (MEDES), Audrey Berthier (MEDES) and Frederic Dayan (ExactCure)
ICES-2023-72 On-orbit Thermal Performance of the JWST Mid-Infrared Instrument	ICES-2023-370 Two-Phase Thermal Switch for Lunar Lander and Rover Thermal Management	ICES-2023-221 Digital Twin for Astronaut Orthopedic Car A Feasibility Study
Bryan Shaughnessy (RAL Space), Tim Grundy (RAL Space), Samuel Tustain (RAL Space), Mireya Etxaluze (RAL Space), Bret Naylor (JPL) and Mark Weilert (JPL)	Nathan Van Velson, Jeffrey Diebold, David-Paul Schulze, Calin Tarau and William Anderson (Advanced Cooling Technologies, Inc.)	Laure Boyer (MEDES/CNES), Léo Fradet (Philomec), Rohan-Jean Bianco (Philomec), Alexis Paillet (CNES) and Audrey Berthier (MEDES)

3
E /IIC prt - Water ystems - velopment
ES RESEARCH CENTER CENTER ERSITY ACE
tro Oxidation Urine Processing
rstems) and John s)
rew Wastewater Technology

✦ TUESDAY 18 JULY ✦ LATE MORNING

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES408-A: ICS ISS US EVA-80 Water Helmet Incident Investigation	ICES506-C: AIAA LS&S Human Exploration Beyond Low Earth Orbit: Missions and Technologies	ICES303-E: AIChE/IIC Physio-Chemical Life Support - Water Recovery & Management Systems - Technology and Process Development
ORGANIZERS: KRISTINE DAVIS, NASA JOHNSON SPACE CENTER NOAH ANDERSEN, NASA JOHNSON SPACE CENTER	ORGANIZERS: DAN BARTA, NASA JOHNSON SPACE CENTER JAMES CHARTRES, MILLENNIUM ENGINEERING & INTEGRATION (MEI) DAWN R. WHITAKER, PURDUE UNIVERSITY	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER MIKE FLYNN, NASA AMES RESEARCH CENTER ANDREW JACKSON, TEXAS TECH UNIVERSITY CESARE LOBASCIO, THALES ALENIA SPACE PETR ANDREYCHUK, RSC ENERGIA
ICES-2023-346 Comparative Analysis for EMU Fleet Latent Loading Characterization in Support of US EVA 80 Failure	ICES-2023-361 Final Report of the COSPAR Meeting Series on Knowledge Gaps in Planetary Protection for Crewed Missions to Mars	
Noah Andersen (HX5, LLC (JETS2))	J Andy Spry (SETI Institute), Bette Siegel (National Aeronautics and Space Administration), Elaine Seasly (NASA) and J Nick Benardini (National Aeronautics and Space Administration)	
ICES-2023-347 Extravehicular Mobility Unit System-Level Model (SINDA EMU) Usage for Operational Mitigations in Support of US EVA 80	ICES-2023-300 Mission-Scale MOXIE Development Driven Prospects for ISRU and Atmosphere Revitalization	ICES-2023-288 Dormancy Protocol of Electro Oxidation Membrane Evaporator for Urine Processing and Water Recovery
Noah Andersen (HX5, LLC (JETS2)) and Bruno Miranda (HX5, LLC (JETS2))	Joseph Hartvigsen (OxEon Energy, LLC), Michele Hollist (OxEon Energy), Jessica Elwell (OxEon Energy, LLC), S. Elangovan (OxEon Energy) and Gerald Voecks (JPL)	Tatsuya Arai (Oceaneering Space Systems) and John Fricker (Oceaneering Space Systems)
ICES-2023-355 Integrated Computational Fluid Dynamics and Thermal Desktop Thermal Modeling for Assessment of the EMU in Support of ISS EVA 80	ICES-2023-349 The Roles of Plants in a Commercial Space Habitat	ICES-2023-360 Alternative Treatment of Crew Wastewater Using a Hybrid Membrane Technology
Blain Lancaster (NASA JSC/JETS), Abigail Baukus (NASA JSC/KBR), Kambiz Andish (NASA JSC/JETS) and Anthony Hanford (NASA JSC/JETS)	Robert Morrow (Sierra Space), John Wetzel (Sierra Space), Samuel Moffatt (Sierra Space), Matthew Bair (Sierra Space) and Laura Kelsey (Sierra Space)	Talon Bullard (USF), Daniella Saetta (NASA/USF), Alexandra Smith (USF), Katrina Haarmann (USF), Flaubert Akepeu (USF), Ana Ferret (USF), Celia DeVito (USF), Benjamin Hoque (USF) et al.
ICES-2023-62 EMU Ventilation Loop Simulation and Assessment of Contamination of the EMU Sublimator Hydrophilic Coating	ICES-2023-170 Dynamic Simulation Study on the Effect of Airtightness on the Sensitivity of Air Composition Monitoring in SPACE FOODSPHERE	ICES-2023-252 Mitigation of Biofouling in Plant Watering Systems Using AgXX, a Novel Surface Treatment
Alex Wickham (Reaction Systems, Inc.), Colin Campbell (NASA Johnson Space Center), Michael Humbert (Collins Aerospace) and David Wickham (Reaction Systems, Inc.)	Hiroyuki Miyajima (International University of Health and Welfare), Yoshitoki Tanaka (JGC Corporation), Hidekazu Tsuda (JGC Corporation) and Soichi Mori (JGC Corporation)	Tesia Irwin (The Bionetics Corporation), Wenyan Li (Amentum), Angie Diaz (Amentum) and Mary Hummerick (Amentum)

10:30

00:11

11:30

12:00

TUESDAY 18 JULY LATE MORNING

IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
ICES302-D: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development	ICES300-A: AIChE ECLSS Modeling and Test Correlations	ICES502-D: AIAA LS&S Space Architecture
ORGANIZERS: MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS	ORGANIZERS: CHANG HYUN SON, THE BOEING COMPANY CYNTHIA REULAND, AERODYNE NIKOLAY IVANOV, PETER THE GREAT SAINT PETERSBURG POLYTECHNIC UNIVERSITY, RUSSIA KEVIN BRAMAN, THE BOEING COMPANY SUSAN SNYDER, THE BOEING COMPANY ANTHONY COOK, THE BOEING COMPANY	ORGANIZERS: MAHSA ESFANDABADI, UNIVERSITY OF HOUSTON ANNE-MARLENE RÜEDE, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE ADAM OSWALD, BLUE ORIGIN GEORGI PETROV, SKIDMORE OWINGS & MERRILL SANDRA HAEUPLIK-MEUSBURGER, TU WIEN SPACE- CRAFT ARCHITEKTUR
ICES-2023-311 Status of the Advanced Oxygen Generation Assembly	ICES-2023-246 Numerical Study of Carbon Dioxide Transport Problem for the Open and Lower Airflow Space in the ISS Module	ICES-2023-449 Simulation-Based Assessment of Hazardous States in a Deep Space Habitat
Kevin Takada (NASA), David Hornyak (NASA), John Garr (NASA), Steven Van Keuren (S&K Global Solutions, Inc.), Christine Faulkner (Jacobs Technology, Inc.) and Abdelrahman Elsherbini (Collins Aerospace)	Chang Son (The Boeing Company), Nikolay Ivanov (New Technologies and Services), Evgueni Smirnov (New Technologies and Services) and Denis Telnov (Peter the Great St. Petersburg Polytechnic University)	Luca Vaccino (Purdue University), Kenneth Pritchard (Purdue University), Mohsen Azimi (Purdue University), Shirley Dyke (Purdue University) and Alana Lund (University of Waterloo)
ICES-2023-101 Ground Testing of an Oxygen Concentrator in a Simulated International Space Station (ISS) Cabin Environment	ICES-2023-56 Comprehensive 3D Multiphysics Model on Electrochemical Recovery of O2 from metabolic CO2 at the International Space Station (ISS)	ICES-2023-458 Successful Testing of Advanced Space Habitat
Laura Soto (NASA), Katerina Lewis (NASA) and Jeffrey Sweterlitsch Ph.D. (NASA).	Jesus Dominguez (Jacobs JSEG/IG), Cara Black, Brittany Brown (NASA Marshall Space Center), Wilaiwan Chanmanee (University of Texas at Arlington), Brian Dennis (UT Arlington), Kaitlin Oliver-Butler (NASA Marshall Space Center), Kagen Crawford (NASA Marshall Space Center), Shannon McCall (Jacobs JSEG) et al.	James Kirwan (ILC Dover), John Lin (ILC Dover), Beth Schaepe (Sierra Space), Gerard Valle (Sierra Space), Matthew Morgan (ILC Dover) and Shawn Buckley (Sierra Space)
ICES-2023-408 Ceramic Oxygen Generator: A Method for Extracting High Pressure, High Purity Oxygen from Spacecraft Cabin Air	ICES-2023-74 V-HAB Atmosphere Modeling and Simulation for a Crewed Polar Sortie	ICES-2023-187 XR Testing Framework for Human-System Interaction Design Validation
John Graf (NASA Johnson Space Center), Dale Taylor (American Oxygen) and Jon Tylka (NASA White Sands Test Facility)	Amrita Singh (University of Colorado Boulder), Trayana Athannassova (University of Colorado Boulder), James Nabity (University of Colorado Boulder) and Claas Olthoff (Airbus)	Vittorio Netti (Sasakawa International Center for Space Architecture), Albert Rajkumar (Sasakawa International Center for Space Architecture) and Olga Bannova (Sasakawa International Center for Space Architecture)
ICES-2023-88 Methane Pyrolysis Enables Closed-loop Oxygen Recovery - Brassboard Evaluation	ICES-2023-249 Numerical Validation of ISS Columbus Crew Alternative Sleeping Area Ventilation with an Improved Configuration	ICES-2023-189 Proposal for a Testing Standard for Planetary Construction Technologies with ISRU
Amanda Childers (Honeywell Aerospace), Stephen Yates (Honeywell Aerospace) and Mark Triezenberg (Honeywell Aerospace)	Chang Son (The Boeing Company), Susan Snyder (The Boeing Company), Amy Caldwell (The Boeing Company), Nikolay Ivanov (New Technologies and Services), Evgueni Smirnov (New Technologies and Services) and Denis Telnov (Peter the Great St. Petersburg Polytechnic University)	Vittorio Netti (Sasakawa International Center for Space Architecture) and Tara Bisharat (Sasakawa International Center for Space Architecture)

INNOVATING THE NEXT ERA OF SPACE EXPLORATION

Built on legacy, ILC Dover is the leading provider and pioneer of environmental systems that will pave the way for long-term human space exploration.

Spacesuits | Space Habitats | Spacecraft Landing Systems | Lighter Than Air

Be part of the team innovating the future.

ILCDOVER.COM/AEROSPACE

TUESDAY 18 JULY EARLY AFTERNOON

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES202-B: IIC Satellite, Payload, and Instrument Thermal Control	ICES104-B: TECS/IIC Advances in Thermal Control Technology	ICES513-B: AIAA LS&S Human Health and Performance Analysis
	ORGANIZERS: JOHANNES VAN ES, NLR ROMAIN PEYROU-LAUGA, EUROPEAN SPACE AGENCY DAVID VALENTINI, THALES ALENIA SPACE HIROYUKI OGAWA, JAPAN INSTITUTE OF SPACE AND ASTRONAUTICAL SCIENCE ALBERTO CORBELLI, SITAEL	ORGANIZERS: JEFF FARMER, NASA MARSHALL SPACE FLIGHT CENTER YANN CERVANTES, CNES PHILIPP B. HAGER, EUROPEAN SPACE AGENCY ANGEL ALVAREZ-HERNANDEZ, NASA JOHNSON SPACE CENTER CHRIS MASSINA, NASA JOHNSON SPACE CENTER WILLIAM JOHNSON, NASA MARSHALL SPACE FLIGHT CENTER JEAN-PAUL DUDON, THALES ALENIA SPACE	ORGANIZERS: CLAAS OLTHOFF, AIRBUS ANA DIAZ ARTILES, TEXAS A&M UNIVERSITY
14:30	ICES-2023-14 Benefits of the In-Orbit Thermal Correlation of the Solar Orbiter Spacecraft	ICES-2023-241 Planetary and Lunar Environment Thermal Toolbox Elements (PALETTE) Project Final Results	ICES-2023-157 Design, Development, and Testing of Peristaltic Suit: Active-Dynamic Compression and Physiological Sensing Intra-vehicular Activity Spacesuit for Cardiovascular Deconditioning
	Scott Morgan (Airbus Defence and Space UK)	David Bugby (Jet Propulsion Laboratory, California Institute of Technology), Jose Rivera (Jet Propulsion Laboratory, California Institute of Technology) and QuynhGiao Nguyen (NASA Glenn Research Center)	Irmandy Wicaksono (MIT), Ali Shtarbanov (MIT), Esha Ranade (MIT), Rebecca Slater (MIT), Dava Newman (MIT) and Joseph Paradiso (MIT)
15:00	ICES-2023-429 Embedded Pulsating Heat Pipe for Improved Heat Spreading in CFRP Equipment Panels for Satellites	ICES-2023-244 Thermal Technology Advancements for Extended-Duration Lunar Operation	ICES-2023-165 Improving Harness-based Partial Gravity Simulators by Implementing Engineering Systems Modeling
	Johannes van Es, Edwin Bloem, Roel Benthem, Adry Van Vliet, Ronald Klomp (Royal Netherlands Aerospace Centre NLR) and Gunnar Sieber (European Space Agency (ESA))	David Bugby (Jet Propulsion Laboratory, California Institute of Technology) and Jose Rivera (Jet Propulsion Laboratory, California Institute of Technology)	Alvin Harvey (Massachusetts Institute of Technology), Nicole McGaa (Massachusetts Institute of Technology) and Dava Newman (Massachusetts Institute of Technology)
15:30	ICES-2023-348 Development of a Variable Conductance Cold Plate for Spatial and Temporal Isothermality Across Power Scales	ICES-2023-350 Thermal Vacuum and Vibration Testing of the Differential Thermal Expansion Thermal Switch	ICES-2023-168 The Mk-7 Gravity Loading Countermeasure Skinsuit: Evaluation of Insole Pressure and Load Distribution
	Elizabeth Seber (Advanced Cooling Technologies) and Michael Ellis (Advanced Cooling Technologies, Inc.)	Stephanie Mauro (NASA MSFC), Jeffery Farmer (NASA MSFC), David Bugby (JPL) and Jose Rivera (JPL)	Ciarra Ortiz (Georgia Institute of Technology), Rachel Bellisle (Massachusetts Institute of Technology), Alvin Harvey (Massachusetts Institute of Technology), Katya Arquilla (Massachusetts Institute of Technology) and Dava Newman (Massachusetts Institute of Technology)
6:00		ICES-2023-123 Highly Thermally Conductive Hybrid Carbon Fiber Polymer Composite for Radiator Application	
		Jin Ho Kang, Keith Gordon (NASA Langley Research Center), Darwyn Ward (NASA Interns, Fellows, and Scholars (NIFS) Program Intern, NASA Langley Research Center), Grace Belancik (NASA Ames Research Center), Pranav Jagtap (KBR Wyle Services, LLC / NASA Ames Research Center) and Godfrey Sauti (NASA Langley Research Center)	

	IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
	ICES408-B: ICS ISS US EVA-80 Water Helmet Incident Investigation	ICES506-D: AIAA LS&S Human Exploration Beyond Low Earth Orbit: Missions and Technologies	ICES304-A: AIChE/IIC Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development
	ORGANIZERS: KRISTINE DAVIS, NASA JOHNSON SPACE CENTER NOAH ANDERSEN, NASA JOHNSON SPACE CENTER	ORGANIZERS: DAN BARTA, NASA JOHNSON SPACE CENTER JAMES CHARTRES, MILLENNIUM ENGINEERING & INTEGRATION (MEI) DAWN R. WHITAKER, PURDUE UNIVERSITY	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER STEVE SEPKA, NASA MATTEO LAMANTEA, THALES ALENIA SPACE ANNIE MEIER, NASA KENNEDY SPACE CENTER RAY PITTS, NASA KENNEDY SPACE CENTER
14:30	ICES-2023-356 EMU CO2 Washout Comparative Assessments for the HAB/HAP-E in Support of EVA 80	ICES-2023-242 Supporting Exploration Missions by Enabling Exploration Mission System Software	ICES-2023-40 Advancements in Logistics Reduction for Exploration Missions
	Moses Navarro (NASA), Abigail Baukus (KBR Wyle Services) and Monica Mah (NASA)	Matthew Miller (Jacobs/NASA JSC), James Montalvo (KBR Wyle/NASA JSC), Ben Feist (Jacobs/NASA JSC), David Charney (Jacobs/NASA JSC), David Rynearson (Jacobs/NASA JSC), Jackie Vu (Jacobs/NASA JSC), Katie Heinemann (KBR Wyle/NASA JSC), Trey Davis (KBR Wyle/NASA JSC) et al.	Melissa McKinley (NASA-JSC), Melissa Borrego (NASA), Patrick Fink (NASA-JSC), Anne Meier (NASA-KSC), Michael Ewert (NASA-JSC), Curtis Hill (ESSCA), Steven Sepka (NASA-ARC), Tra-My Justine Richardson (NASA- ARC) and Evelyn Orndoff (NASA-JSC)
15:00	ICES-2023-431 Assessment of HAB Particulate Tracing in EMU Helmet in Support of EVA 80	ICES-2023-362 Data Collection in Svalbard, Norway to Test the use of Virtual Reality for Lunar and Planetary Surface Exploration	ICES-2023-207 The Trash Compaction Processing System (TCPS) Technology Demonstrations Science Objectives and Requirement Definitions
	Abigail Baukus (NASA) and Colin Campbell (NASA)	Cody Paige, Don Derek Haddad, Ferrous Ward, Jessica Todd (Massachusetts Institute of Technology, Gordon R. Osinski (University of Western Ontario), Ariel Ekblaw and Dava Newman (Massachusetts Institute of Technology)	Tra-My Justine Richardson (National Aeronautics and Space Administration), Steve Sepka (NASA), Kevin Martin (NASA), Michael Ewert (Johnson Space Center), Melissa McKinley (NASA-JSC), Jeffrey Lee (NASA), Gregory Pace (KBR Wyle), Douglas White (Stellar Solutions, Inc) et al.
15:30	ICES-2023-432 EMU Helmet Free Water Transport Assessment for the HAB in Support of EVA 80	ICES-2023-334 Multi-Sensor 3D Data Visualization in Virtual Reality for Planetary Science and Mission Operations	ICES-2023-296 Design of a Trash Compaction & Processing System (TCPS) for Waste Management and Logistics Reduction in Long Duration Spaceflight
	Abigail Baukus (NASA) and Colin Campbell (NASA)	Ferrous Ward (MIT), Cody Paige (MIT), Jess Todd (MIT), Don Derek Haddad (MIT), Jennifier Heldmann (NASA Ames), Darlene Lim (NASA Ames), Dava Newman (MIT) and Ariel Ekblaw (MIT)	Joseph Klopotic (Sierra Space), Daniel Wyman (Sierra Space), Zachary Petrie (Sierra Space) and John Wetzel (Sierra Space)
16:00	ICES-2023-402 Excess Water in Astronaut Helmet During EVA on ISS: Mitigations with Flight Demonstrations	ICES-2023-233 Passive Deployment Mechanisms for Minimal Composition of Lunar/Martian Base Camp Implanted into Lava Tube	ICES-2023-7 Source Contaminant Control System Design, Operation, and Testing for the Trash Compaction and Processing System
	Mark Weislogel (IRPI LLC), John Graf (NASA), Logan Torres (IRPI LLC), Oleg Krishcko (IRPI LLC), Paul Dum (NASA), Colin Campbell (NASA) and Tessa Rundle (NASA)	Jun Sato, Saneyuki Kawabata, Tomohiro Yokozeki (The University of Tokyo), Kazuya Saito (Kyushu University), Masato Sakurai, Yasuhiro Awata and Nao Hoshinouchi (Japan Aerospace Exploration Agency)	Janine Young (NASA), Gregory Pace (KBRWyle), Serena Trieu (NASA), Kevin Martin (NASA), Tra-My Justine Richardson (NASA), Steve Sepka (NASA) and Jurek Parodi (NASA)

TUESDAY 18 JULY EARLY AFTERNOON

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-E: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development	ICES300-B: AIChE ECLSS Modeling and Test Correlations	ICES509-A: AIAA LS&S Fire Safety in Spacecraft and Enclosed Habitats
	ORGANIZERS: MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS	ORGANIZERS: CHANG HYUN SON, THE BOEING COMPANY CYNTHIA REULAND, AERODYNE NIKOLAY IVANOV, PETER THE GREAT SAINT PETERSBURG POLYTECHNIC UNIVERSITY, RUSSIA KEVIN BRAMAN, THE BOEING COMPANY SUSAN SNYDER, THE BOEING COMPANY ANTHONY COOK, THE BOEING COMPANY	ORGANIZERS: GRUNDE JOMAAS, ZAG GARY A. RUFF, NASA GLENN RESEARCH CENTER DAVID URBAN, NASA GLENN RESEARCH CENTER STEPHEN PERALTA, NASA WHITE SANDS TEST FACILITY MICHAEL JOHNSTON, NASA GLENN RESEARCH CENTER ULISES ROJAS ALVA, ZAG
4:30	ICES-2023-260 Increased Oxygen Recovery Using Plasma Pyrolysis Technology and Electrochemical Hydrogen Separation	ICES-2023-445 First Principles Modeling of the Thermal Amine Scrubber Flight Experiment's Chemical Performance	ICES-2023-133 Limiting Oxygen Concentrations of Burning PMMA Cylinders under External Radiant Heating and Subatmospheric Pressure
	Kagen Crawford (NASA Marshall Space Flight Center), Cara Black (NASA Marshall Space Flight Center) and Travis Quillen (Jacob Space Exploration Group)	Lawrence Barrett (Jacobs Engineering)	Christina Liveretou, Charles Scudiere, Jose Rivera, Carlos Fernandez-Pello, Michael Gollner (University of California, Berkeley), Sandra Olson and Paul Ferkul (USRA; NASA John H. Glenn Research Center)
5:00	ICES-2023-127 Automated Carbon Formation Reactor Facilitates Closed-Loop Oxygen Recovery to Enable Long-Duration Manned Missions	ICES-2023-211 Ecosystem Modeling and Validation using Empirical Data from NASA CELSS and Biosphere 2	ICES-2023-171 Sooting Behavior in Concurrent and Upward Burning of Cylindrical PMMA- samples
	Mary Powell, Chris Holt, Paul Matter, Travis Hery, Toby Baumgartner, Jacob Goldman, Carolyn Weiser, Charlie Wiswesser (pH Matter LLC) et al.	Grant Hawkins (Over the Sun, LLC), Ezio Melotti (Over the Sun, LLC), Kai Staats (Over the Sun, LLC), Atila Meszaros (Over the Sun, LLC) and Gene Giacomelli (University of Arizona)	Christian Eigenbrod (University of Bremen, ZARM), Florian Meyer (University of Bremen, ZARM), Hans- Christoph Ries (University of Bremen, ZARM) and Jan Heissmeier (University of Bremen, ZARM)
5:30	ICES-2023-403 Ionic Liquids for a Regenerable Carbon Formation Reactor: Reactor Design Study and Ionic Liquid Parameterization		ICES-2023-191 Upward Flame Spread over a Thin Fabric in Normoxic Atmospheres
	Kaitlin Oliver-Butler (NASA Marshall Space Flight Center) and Mitchell Woolever (University of Colorado, Boulder)		Maria Thomsen (Universidad Adolfo Ibañez), Luca Carmignani (University of California Agriculture and Natural Resources), Priya Garg, Carlos Fernandez- Pello, Michael Gollner (University of California, Berkeley), David Urban (NASA) and Gary Ruff (NASA)
6:00	ICES-2023-351 Cold Trap Carbon Capture Filter for Carbon Fines Management – In-laboratory Performance and Efficiency Results		ICES-2023-194 Evaluation of Buoyant Flow Velocity Induced by Centrifugal and Coriolis Acceleration During Downward Flame Spread Over Thin Wire in a Centrifuge
	Juan Agui (NASA) and Gordon Berger (USRA)		Yusuke Konno (Hokkaido University), Shoryu Ishikawa (Hokkaido University), Nozomu Hashimoto (Hokkaido

University) and Osamu Fujita (Hokkaido University)

ΝΟΤΓΟ	
NOTES +	

Speed, Scale, and Security

FOR THE NEXT GENERATION OF SPACE INNOVATION

GIRLETZ RANCH

GIRLETZ RODEO RANCH

OWNED & OPERATED BY THE GIRLETZ FAMILY

THE RANCH, LOCATED JUST 15 MINUTES NORTH OF CALGARY, remains one of Calgary's ideal locations for a very unique western experience. After operating for 80 years this working ranch has transformed into a fascinating one-of-a-kind venue. The outdoor rodeo arena, with spectator boxed seating, offers an exclusive up-close seat to the heart-throbbing bull riding & wild west performance.

WE WILL ENJOY A BBQ DINNER WITH ALL THE FIXIN'S, PERFORMANCES BY RODEO PROS AND LOTS OF INTERACTIVE ACTIVITIES TO WRANGLE UP YOUR COWBOY SPIRIT!

> SO PACK YOUR BOOTS IF YA GOT EM' BUSES LEAVE AT 17:30 FROM THE HYATT REGENCY CALGARY

> > **EVENT SPONSORED BY**

SWEDNESDAY 19 JULY EARLY MORNING

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
Spa	ES101-A: TECS cecraft and Instrument Thermal tems	ICES104-C: TECS/IIC ICES103-A: TECS/IIC 104: Advances in Thermal Control Technology 103: Thermal Control of Commercial and Exploration Spacecraft	ICES406-A: ICS/AIChE Spacecraft Water/Air Quality: Maintenance and Monitoring
JOSE LABO HUM WES	GANIZERS: E RODRIGUEZ, NASA JET PROPULSION DRATORY IE PEABODY, NASA GODDARD SPACE FLIGHT CENTER OUSLEY, LENTECH, INC. G BOLTON, NASA JET PROPULSION LABORATORY	104 ORGANIZERS:103 ORGANIZERS:JEFF FARMERTOM LEIMKUEHLERYANN CERVANTESJOSE ROMANPHILIPP B. HAGERSEAN TUTTLEANGEL ALVAREZ-ANDREA FERREROHERNANDEZCHRIS MASSINAWILLIAM JOHNSONJEAN-PAUL DUDON	ORGANIZERS: DAVID ZUNIGA, AXIOM SPACE DARREL JAN, NASA AMES RESEARCH CENTER
The Con	ES-2023-44 rmal Design of the Deep Space Optical nmunication (DSOC) Payload for the che Mission	ICES-2023-448 (ICES104) Design of an Actively Shuttered Dust- Resilient Radiator for Lunar Applications	ICES-2023-276 Iodine Depletion Analysis of Polyvinylidene Fluoride Bladders for the Potable Water System on Axiom Station
	ur Na-Nakornpanom (Jet Propulsion Laboratory) Rogelio Rosas (Jet Propulsion Laboratory)	Andrew S. Gibson (ESR Technology), Angel Iglesias (Almatech SA), Dominic Bailes-Brown (ESR Technology Limited), Martin Humphries (Spacemech Limited), Simeon Barber (Space Science Solutions Limited) and Philipp Hager (European Space Agency)	Saige Drecksler (Axiom Space), Héctor Colón-Colón (Axiom Space), Joseph Gutheinz (Axiom Space), Jamison Tyson (Axiom Space), Megan Yang (Axiom Space) and Frank Thomas (Axiom Space)
The Opt	ES-2023-269 rmal Control Design for Deep Space ical Communication (DSOC) Docking chanism High-Output Paraffin Actuator	ICES-2023-60 (ICES103) Actively Controlled Louver for Human Spacecraft Radiator Ultraviolet (UV), Dust, and Freeze Protection	ICES-2023-279 Iodine Depletion Analysis of Polyether Urethane Bladders for the Potable Water System on Axiom Station
Greg and I	elio Rosas, Kristen MacNeal, Marcus Wilkerson, ory Agnes, Joel Johnson, Arthur Na-Nakornpanom Brenda Hernandez (Jet Propulsion Laboratory, ornia Institute of Technology)	Darnell Cowan (NASA)	Héctor Colón-Colón (Axiom Space), Saige Drecksler (Axiom Space), Joseph Gutheinz (Axiom Space), Jamison Tyson (Axiom Space), Megan Yang (Axiom Space) and Frank Thomas (Axiom Space)
30		ICES-2023-120 (ICES103) Theoretical Approach to Quantify Effects of Lunar Dust Deposition on Radiator Performance for Moon Exploration Missions	ICES-2023-230 Evaluation of Long-Term Microbial Regrowth in Slosh Water Tanks from the International Space Station
		Philipp B. Hager (European Space Agency), Adrian P. Tighe (European Space Agency), Fabrice W.S. Cipriani (European Space Agency) and Francesca McDonald (European Space Agency)	Luke Roberson (NASA), Jason Fischer (Amentum), Daniella Saetta (University of South Florida), Carolina Franco (Amentum), Christina Khodadad (Amentum), Mary Hummerick (Amentum), Cory Spern (Amentum), Daniel Yeh (University of South Florida) et al.

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES405: ICS Human/Robotics System Integration	ICES307-A: AIChE Collaboration, Educational Outreach, and Public Engagement	ICES304-B: AIChE/IIC Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development
ORGANIZERS: AMY ROSS, NASA JOHNSON SPACE CENTER DR. DAVID AKIN, UNIVERSITY OF MARYLAND	ORGANIZERS: LUCIE POULET, NASA POSTDOCTORAL PROGRAM, KENNEDY SPACE CENTER DEAN MUIRHEAD, BARRIOS TECHNOLOGY JOCHEN KEPPLER, SELEON GMBH MARY LOU NADEAU, AERODYNE INDUSTRIES	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER STEVE SEPKA, NASA MATTEO LAMANTEA, THALES ALENIA SPACE ANNIE MEIER, NASA KENNEDY SPACE CENTER RAY PITTS, NASA KENNEDY SPACE CENTER
ICES-2023-156 Roles of Human and Robotic Agents Toward Operating a Smart Space Habitat	ICES-2023-342 Pathway to Successful Inclusion of Tribal Colleges and Universities (TCUs) in the Johnson Space Center (JSC) Small Business Innovation Research (SBIR) / SBIR Technology Transfer (STTR) Program	ICES-2023-38 NASA Exploration Toilet On-orbit Results and Impact on Future Missions
Xiaoyu Liu (Purdue University), Amir Behjat (Purdue University), Shirley Dyke (Purdue University), Dawn Whitaker (Purdue University), Julio Ramirez (Purdue University) and Ilias Bilionis (Purdue University)	Doug Goodman (Jacobs), Kathryn Packard (NASA) and James Whittington (JETS/JSC)	Melissa McKinley (NASA-JSC), Melissa Borrego (NASA), Cory Kaufman (Collins Aerospace), Jill Williamson (NASA-MSFC) and Kelly DeRees (NASA-JSC)
ICES-2023-78 A Simulated Air Revitalization Task to Investigate Remote Operator Human-Autonomy Teaming With Communication Latency	ICES-2023-442 iSTEM to Know NASA Outreach Program at Purdue University Fort Wayne	ICES-2023-420 Feasibility of an Optical Sensor to Monitor Toilet Pretreat Quality
Jacob Kintz (University of Colorado - Boulder), Young- Young Shen (MDA Ltd.), Savannah Buchner (University of Colorado - Boulder), Allison Anderson (University of Colorado - Boulder) and Torin Clark (University of Colorado - Boulder)	Dawn Whitaker (Purdue University) and Marteze Hammonds (Purdue University Fort Wayne)	Cory Kaufman (Collins Aerospace), Robert Youngquist (QPhysics Inc), Tracy Gibson (NASA), Mark Nurge (NASA) and Upendra Singh (NASA)
ICES-2023-464 Development and Testing of Crew Interfaces for an Advanced Unpressurized Exploration Rover	ICES-2023-452 Space Hands-on Training at the University of Stuttgart: from Microalgae to Docking Maneuvers	ICES-2023-43 Evolution of the Next Exploration Toilet through Human-in-the-Loop (HITL) Testing
Charles Hanner, Nicolas Bolatto, Daniil Gribok, Spencer Quizon, Rowan Quintero, Ian Welfeld and David Akin (University of Maryland)	Gisela Detrell (Institute of Space Systems - University of Stuttgart)	Melissa Borrego, Mary Walker (National Aeronautics and Space Administration (NASA)), Yvette Carmona (KBR Wyle Services, LLC (JES Tech)), Alexandra Eifert (KBR Wyle Services, LLC (AEGIS Aerospace)) and Alisa Marshall (KBR Wyle Services, LLC (Leidos))

8:30

9:00

9:30

SWEDNESDAY 19 JULY EARLY MORNING

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-F: AIChE/ICS/IIC ICES504: AIAA LS&S 302: Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development 504: Management of Air Quality in Sealed Environments	ICES510-A: AIAA LS&S Planetary and Spacecraft Dust Properties and Mitigation Technologies	ICES509-B: AIAA LS&S Fire Safety in Spacecraft and Enclosed Habitats
	302 ORGANIZERS: MORGAN ABNEY, NASA ESC GRACE BELANCHIK, NASA ARC JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS	ORGANIZERS: MARIE-CHRISTINE DESJEAN, CNES JUAN H. AGUI, NASA GLENN RESEARCH CENTER MARIT MEYER, NASA GLENN RESEARCH CENTER	ORGANIZERS: GRUNDE JOMAAS, ZAG GARY A. RUFF, NASA GLENN RESEARCH CENTER DAVID URBAN, NASA GLENN RESEARCH CENTER STEPHEN PERALTA, NASA WHITE SANDS TEST FACILITY MICHAEL JOHNSTON, NASA GLENN RESEARCH CENTER ULISES ROJAS ALVA, ZAG
8:30	ICES-2023-1 (ICES302) Performance of Flight Compatible Microlith® Catalytic Oxidizer for Exploration Trace Contaminant Control	ICES-2023-285 Low Temperature, Durable Siloxane/ Epoxy Nanocomposite Coating for Drastic Reduction in Lunar Particulate Adhesion	ICES-2023-18 Chemical Challenge Tests on ISS Fire Cartridges
	Saurabh Vilekar (Precision Combustion, Inc.), Curtis Morgan (Precision Combustion, Inc.), Matthew Kayatin (NASA) and Jay Perry (National Aeronautics and Space Administration)	Lauryn Baranowski (TDA Research, Inc.), Denis Kissounko (TDA Research, Inc.), Matt Peppel (TDA Research, Inc.), Amrita Singh (University of Colorado Boulder) and James Nabity (University of Colorado Boulder)	Cristina Muko (KBR), Steven Beck (KBR), Edgar Hudson (JES Tech), Lawrence Barrett (Jacobs), Adam Korona (Jacobs), Emily Rabel (NASA), William Wallace (KBR), Spencer Williams (NASA) and Daniel Gazda (NASA)
9:00	ICES-2023-80 (ICES302) Is Direct Methane Removal in Human Space Flight Required?	ICES-2023-272 Evaluation of Lunar Dust Dispersion with Computational Fluid Dynamics Discrete Phase Modeling	ICES-2023-21 A Study of the Kinetics of the CO Oxidation Catalyst in a Human Spaceflight Fire Cartridges as a Method to Understand and Predict Performance
	Bettylynn Ulrich (Northrop Grumman)	Abigail Baukus (KBR) and Rachel Sturtz (Jacobs)	Adam Korona (Jacobs Engineering), Lawrence Barrett (Jacobs Engineering), Emily Rabel (NASA), Cristina Muko (KBR), Steven Beck (KBR) and Edgar Hudson (KBR)
9:30	ICES-2023-229 (ICES504) Advanced Adsorbents for Ammonia Control in Enclosed Environments	ICES-2023-322 Updated Analysis of Particulate Data from the Airborne Particulate Monitor ISS Payload	ICES-2023-24 Characterizing Fit Factor of a One Size Fits- Most Emergency Mask using Subjects with Smaller Neck Circumferences
	Charles Cummings (QinetiQ) and Edward Harris (QinetiQ)	Claire Fortenberry (Universities Space Research Association/NASA Glenn Research Center) and Marit Meyer (Northrop Grumman)	Adam Korona (Jacobs), Emily Rabel (NASA (JSC)), Justine Wiles (NASA (JSC)), Matt Meyer (Jacobs), Alicia Ruiz (Jacobs) and Jeff Hahn (Jacobs)

NOTES +	 	

WEDNESDAY 19 JULY LATE MORNING

WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
ICES101-B: TECS Spacecraft and Instrument Thermal Systems	ICES103-B: TECS/IIC Thermal Control of Commercial and Exploration Spacecraft	ICES406-B: ICS/AIChE Spacecraft Water/Air Quality: Maintenance and Monitoring
ORGANIZERS: JOSE RODRIGUEZ, NASA JET PROPULSION LABORATORY HUME PEABODY, NASA GODDARD SPACE FLIGHT CENTER WES OUSLEY, LENTECH, INC. DOUG BOLTON, NASA JET PROPULSION LABORATORY	ORGANIZERS: TOM LEIMKUEHLER, NASA JOHNSON SPACE CENTER JOSE ROMAN, NASA MARSHALL SPACE FLIGHT CENTER SEAN TUTTLE, NOVA SYSTEMS / SIGMA SPACE SYSTEMS ANDREA FERRERO, THALES ALENIA SPACE	ORGANIZERS: DAVID ZUNIGA, AXIOM SPACE DARREL JAN, NASA AMES RESEARCH CENTER
ICES-2023-264 NASA's PACE Ocean Color Instrument Thermal Design Evolution: from Goddard's Instrument Design Lab Through Flight Development	ICES-2023-42 Analyses of Blue Origin Blue Moon Lunar Landing Descent Engine Plume Effects	ICES-2023-333 Culture-Independent Fungal Profiling for the International Space Station using Nanopore Sequencing: Method Development
Kan Yang (NASA Goddard Space Flight Center), Deepak Patel (NASA Goddard Space Flight Center) and Wes Ousley (Vertex Aerospace)	William Hoey, Maxwell Martin, John Alred, Carlos Soares (Jet Propulsion Laboratory, California Institute of Technology) and Mohammed Ababneh (Blue Origin, LLC)	Hang Nguyen (JSC NASA (JES Tech)), Sarah Stahl- Rommel (JSC NASA (JES Tech)), Marie G. Sharp (JSC NASA (KBR)), Christian L. Castro (JSC NASA (JES Tech)) and Sarah Castro-Wallace (JSC NASA).
ICES-2023-461 Check Valve Anomaly Investigation for the Mars 2020 Spacecraft	ICES-2023-338 Hybrid Thermal Control System for Extreme Thermal Environments	ICES-2023-386 Limiting Biocidal Silver Loss in Stainless Steel Water Tanks Using Ceramic Thin Film Coatings
Jennifer Miller (NASA JPL), Pradeep Bhandari (JPL), Keith Novak (Jet Propulsion Laboratory), Razmig Kandilian (NASA JPL), Kaustabh Singh (Jet Propulsion Laboratory), Paul Karlmann (NASA JPL), Mohamed Abid (NASA JPL) and Jacqueline Lyra (Jet Propulsion Laboratory)	William Johnson (NASA Marshall Space Flight Center), Kayla Daniel (NASA Marshall Space Flight Center), Kenton Roberts (NASA Marshall Space Flight Center), Greg Schunk (NASA Marshall Space Flight Center) and Jeffery Farmer (NASA Marshall Space Flight Center)	Ali Ansari, Weylyn Lee (Cactus Materials, Inc.), Afsana Munni, Kiarash Ranjbari, Francois Perreault (Arizona State University), Rafiqul Islam (Cactus Materials, Inc.), Mariana Hernandez Molina, Marcela Strane (Arizona State University) et al.
ICES-2023-447 Design of Working Fluid Venting System for Mechanical Pumped Fluid Loop Heat Rejection System for Mars Missions	ICES-2023-142 Development of Parabolic Flight Experiment to Measure the Volume of Gas Bubbles Detaching from Substrates in a Liquid as a Function of Buoyancy, Gravitational Force and Substrate Surface Energy	ICES-2023-110 Progress on the Organic and Inorganic Modules of the Spacecraft Water Impurity Monitor, a Next Generation Complete Water Analysis System for Crewed Vehicle
Pradeep Bhandari (Jet Propulsion Laboratory)	Jadon Kaercher (Texas A&M University), Justin Roskamp (Texas A&M University), Samantha DeNicola (Texas A&M University) and Bonnie Dunbar (Texas A&M University)	Stuart Pensinger, Michael Callahan (NASA Johnson Space Center), Evan Neidholdt (KBR), Aaron Noell, Nathan Oborny, Byunghoon Bae, Valeria Lopez, Bruce Hancock (Jet Propulsion Laboratory) et al.

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES407-A: ICS Extravehicular Activity: Emerging Space Suit Technologies	ICES307-B AIChE Collaboration, Educational Outreach, and Public Engagement	ICES304-C: AIChE/IIC Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development
ORGANIZERS: BRAD HOLSCHUH, UNIVERSITY OF MINNESOTA SHANE JACOBS, DAVID CLARK COMPANY INCORPORATED	ORGANIZERS: LUCIE POULET, NASA POSTDOCTORAL PROGRAM, KENNEDY SPACE CENTER DEAN MUIRHEAD, BARRIOS TECHNOLOGY JOCHEN KEPPLER, SELEON GMBH MARY LOU NADEAU, AERODYNE INDUSTRIES	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER STEVE SEPKA, NASA MATTEO LAMANTEA, THALES ALENIA SPACE ANNIE MEIER, NASA KENNEDY SPACE CENTER RAY PITTS, NASA KENNEDY SPACE CENTER
ICES-2023-32 Thinking Outside the Apollo Toolbox: Designing SAMPLERS - Spacesuit Attached Multi-Purpose Lunar EVA Retrieval System	ICES-2023-459 A Constellation of Dreamers: Advancing Space Exploration through Democratization	ICES-2023-385 Baseline Assumptions and Ersatz Waste Streams for Partial Gravity Habitats with Mobile Female and Male Crew
Samuel Stenzel (Wayzata High School)	Daniella Ngarambe, Patrick Grubbs, Anatole Trepos, Florent Bourlette (The Spring Institute for Forests on the Moon), Tarek Ben Slimane (Ecole Polytechnique) and Louise Fleischer (The Spring Institute for Forests on the Moon)	Dean Muirhead (Barrios Technology), Stacey Marshall (Aerodyne Industries, Jacobs JETS Contract), Leopoldo Romero (Jacobs Technology), Niklas Adam (NASA) and Michael Callahan (NASA)
ICES-2023-239 Design Process Intended to Protect xEMU Components from Lunar Dust	ICES-2023-266 Inspiring Future Generations to Pursue Careers in Space	ICES-2023-418 Ejectors as a Contingency for Waste and Odor Collection in Microgravity
Thomas Stapleton (Innovative Aerospace LLC), Cinda Chullen (NASA), Kelsey Bloom (Jacobs Technology), Otis Walton (Grainflow Dynamics, Inc.), Beichuan Yan (University of Colorado, Boulder) and Saikat Chakraborty Thakur (Auburn University, Auburn)	Michael Wales (Blue Origin), Laurinda Bellinger (Blue Origin), Kristen Yip (Blue Origin), Riza Mae Mold (Blue Origin), Barret Schlegelmilch (Blue Origin), Violet Days (Blue Origin), Amalaye Oyake (Blue Origin) and Charles Njoka (Blue Origin)	Cory Kaufman (Collins Aerospace), Matthew Pearson (Raytheon Technologies Research Center) and Yasmin Khakpour (Raytheon Technologies Research Center)
ICES-2023-271 Conceptual Design for the Advancement of Mechanical Counterpressure Spacesuits	ICES-2023-154 Unfolding the Universe with the James Webb Space Telescope: Combining Art, Science, and Technology for Public Outreach	ICES-2023-8 The Collapsible Contingency Urinal (CCU) for Spacecraft
Michelle Kostin (Imperial College London)	Elaine Stewart (NASA), Ashley Zelinskie (Ashley Zelinskie Studio LLC) and Maggie Masetti (ADNET SYSTEMS Inc)	Mark Weislogel (IRPI LLC), Ryan Jenson (IRPI LLC), Oleg Krishcko (IRPI LLC), Logan Torres (IRPI LLC), Adam Naids (NASA Johnson Space Center), John Graf (NASA) and Donald Pettit (NASA Johnson Space Center)

10:30

00:11

11:30

WEDNESDAY 19 JULY LATE MORNING

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-G: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development	ICES510-B: AIAA LS&S Planetary and Spacecraft Dust Properties and Mitigation Technologies	ICES509-C: AIAA LS&S Fire Safety in Spacecraft and Enclosed Habitats
	ORGANIZERS: MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS	ORGANIZERS: MARIE-CHRISTINE DESJEAN, CNES JUAN H. AGUI, NASA GLENN RESEARCH CENTER MARIT MEYER, NASA GLENN RESEARCH CENTER	ORGANIZERS: GRUNDE JOMAAS, ZAG GARY A. RUFF, NASA GLENN RESEARCH CENTER DAVID URBAN, NASA GLENN RESEARCH CENTER STEPHEN PERALTA, NASA WHITE SANDS TEST FACILITY MICHAEL JOHNSTON, NASA GLENN RESEARCH CENTER ULISES ROJAS ALVA, ZAG
10:30	ICES-2023-210 Multifunctional Sorbent (MultiSORB) Devices for Carbon Dioxide Removal	ICES-2023-469 Cyclone Sub-Micron Particulate Separator	ICES-2023-204 Vehicle Modeling during the Burning of Cotton Samples in the Saffire IV and V Experiments
	Tra-My Justine Richardson, Keith Peterson (NASA), Tane Boghozian (Analytical Mechanics Assoiates Inc.), Hannah Alpert (NASA), Sander Visser, Gurpreet Klar (Analytical Mechanics Associates, Inc.), Alexander Schmitt, Gabriella Sandoval (Guardian of Honors)	Matthew Haggerty (Mainstream Engineering Corporation), Matthew Emmons (Mainstream Engineering Corporation), Andrew Wagner (Mainstream Engineering Corporation) and Michael Cutbirth (Mainstream Engineering Corporation)	Justin Niehaus (NASA) and John Brooker (NASA GRC)
11:00	ICES-2023-417 Carbon Dioxide Adsorption Process of 3D Zeolite-13X Structures: A Numerical Study	ICES-2023-277 Development of Challenge Aerosols for Testing Filters in Spacecraft Air Revitalization Systems	ICES-2023-329 Modeling Characterization of Smoke Particle Transport and Fate in Lunar Gravity
	Noah Agata, Priom Agrawal (North Carolina State University), Joseph Cesarano, Michael Niehaus (Robocasting Enterprises LLC), Tra-My Justine Richardson (Ames Research Center) and Sajjad Bigham (North Carolina State University) et al.	Robert Green (NASA), Gordon Berger (USRA), Benjamin Sumlin (USRA), R. Vijayakumar (USRA) and Juan Agui (NASA)	Claire Fortenberry (Universities Space Research Association/NASA Glenn Research Center), David Urban (NASA Glenn Research Center) and Gary Ruff (NASA Glenn Research Center)
11:30		ICES-2023-200 Flight Environment HEPA Filter Testing for Lunar Dust Removal Capability	ICES-2023-434 Trade Study Considerations for Fire Detection, Suppression and Remediation Systems for Commercial Space Missions
		Andrew Walcker (Paragon Space Development Corp), Juan Agui (NASA), Zach Turner (Northrop Grumman), Robert Green (NASA) and Gordon Berger (NASA)	Marit Meyer (Northrop Grumman) and Bettylynn Ulrich (Northrop Grumman)

NOTES +		

EARLY AFTERNOON

	WALKER/BANNERMAN	DOLL/HERALD
	ICES107: TECS/IIC Thermal Design of Cubesats, Nanosats, and Other Small Satellites	ICES501: AIAA LS&S Life Support Systems Engineering and Analysis
	ORGANIZERS: STEPHANIE MAURO, NASA MARSHALL SPACE FLIGHT CENTER ROBERT COKER, JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY BRIAN BRIGGS, NASA JET PROPULSION LABORATORY HOSEI NAGANO, NAGOYA UNIVERSITY	ORGANIZERS: ANDREW OWENS, NASA LANGLEY RESEARCH CENTER JAMES NABITY, UNIVERSITY OF COLORADO CHEL STROMGREN, BINERA, INC.
14:00	ICES-2023-130 Testing and Evaluation of Spacecraft Thermal Isolators for SmallSats	ICES-2023-89 Human Landing System ECLSS Research and Design
	Isaac Foster (Air Force Research Laboratory), Trevor Bird (Blue Halo), Derek Hengeveld (Redwire) and Steven Lockyer (Redwire)	Cody Bahan, Nathan Foote, Kathleen Laughton, Adam Oswald, Aanshi Panchal, Chad Pflieger, Samuel Trux, Stuart Tozer (University of Colorado, Boulder) et al.
14:30	ICES-2023-227 Thermal Control System Design and On-Orbit Validation for the 6U CubeSat SPHERE-1 EYE	ICES-2023-250 Optimal PV and Battery Sizing for a Space Microgrid Near the Lunar South Pole Considering ISRU, Habitat and Water Subsystem Power Demand
	Kazuki Takashima, Shingo Nishimoto, Yuki Kusano, Kazuki Toma, Toshihiro Shibukawa, Shinichi Yokobori, Akihiro Ishikawa, Shuhei Matsushita (The University of Tokyo) et al.	Diptish Saha (Aalborg University), Najmeh Bazmohammadi (Aalborg University), Juan C. Vasquez (Aalborg University) and Josep M. Guerrero (Center for Research on Microgrids (CROM), Energy Department, Aalborg University)
15:00	ICES-2023-217 Evaluation of Thermal System Based on Flight Result of Nano Moon Lander OMOTENASHI	ICES-2023-169 Break-Even Point Analysis of In Situ Resource Utilization for Mars Settlement by SpaceX Starship
	Junji Kikuchi, Tomihiro Kinjoh, Yuki Akizuki (Japan Aerospace Exploration Agency (JAXA)), Toshihiro Osada (Shinwa Space Inc.) and Tatsuaki Hashimoto (Japan Aerospace Exploration Agency (JAXA))	Hiroyuki Miyajima (International University of Health and Welfare)
15:30		

STEPHEN A/B

ICES204-A: IIC/AIAA LS&S **Bioregenerative Life Support**

ORGANIZERS: **CESARE LOBASCIO, THALES ALENIA SPACE** MASATO SAKURAI, JAXA MIRIAM SARGUSINGH, NASA JOHNSON SPACE CENTER PAUL ZABEL, DLR MONONITA NUR, NASA

ICES-2023-318 Workload Measurements in the EDEN ISS Greenhouse during the 2021 Antarctic **Overwintering Mission**

Conrad Zeidler (German Aerospace Center) and Jess Bunchek (German Aerospace Center)

ICES-2023-140 **PFPU - Microgravity Precursor Food Production Unit development status**

Giorgio Boscheri, Giovanni Marchitelli (Thales Alenia Space Italia), Thomas Fili (Thales Alenia Space), Christel Paille (European Space Agency), Irene Karoliussen, Achim Gerstenberg, Øyvind Mejdell Jakobsen and Kai Arne Kristiansen (NTNU Samforsk)

ICES-2023-234 **Plasma Activated Water: A Technology** for Acid Generation and Space Crop Production

Ryan Gott (Oak Ridge Associated Universities), Kenneth Engeling (NASA), Joel Olson, Bruce Link (Southeastern Universities Research Association), Misle Tessema (NASA), Jason Fischer, Carolina Franco (Amentum) and Christina Johnson (Oak Ridge Associated Universities)

ICES-2023-450 Ionic Liquid-based CO2 Control of Plant **Growth Chamber Atmospheres**

Felix Nitschke (Technical University of Munich) and James Nabity (University of Colorado Boulder)

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES407-B: ICS Extravehicular Activity: Emerging Space Suit Technologies	ICES307-C AIChE Collaboration, Educational Outreach, and Public Engagement	ICES304-D: AIChE/IIC Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development
ORGANIZERS: BRAD HOLSCHUH, UNIVERSITY OF MINNESOTA SHANE JACOBS, DAVID CLARK COMPANY INCORPORATED	ORGANIZERS: LUCIE POULET, NASA POSTDOCTORAL PROGRAM, KENNEDY SPACE CENTER DEAN MUIRHEAD, BARRIOS TECHNOLOGY JOCHEN KEPPLER, SELEON GMBH MARY LOU NADEAU, AERODYNE INDUSTRIES	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER STEVE SEPKA, NASA MATTEO LAMANTEA, THALES ALENIA SPACE ANNIE MEIER, NASA KENNEDY SPACE CENTER RAY PITTS, NASA KENNEDY SPACE CENTER
ICES-2023-336 Design of an Augmented Reality User Interface for Lunar Extravehicular Activity Operations	ICES-2023-16 U.S. Spacesuit Knowledge Capture – Expanding Our Future	ICES-2023-199 Spaceflight Exercise and Textile Laundering Machine for Improved Human Health
Michael Fornito, Nicholas Lopac, Graydon Russell, Joseph Demartini, Riley Flanagan, Lea Miller and Miranda Young (Embry-Riddle Aeronautical University)	Cinda Chullen (NASA), Vladenka Oliva (Jacobs), Gordon Andrews (Jacobs) and Diana Rodgers (S&K Global Solutions)	Andrew Arends (University of California, Davis) and Stephen Robinson (University of California, Davis)
ICES-2023-371 Heat Balance Model to Inform Requirements for Martian Spacesuit Architectures	ICES-2023-307 Integrating Hands-on Learning Modules into a Course on Life Support Systems	ICES-2023-328 Ultrasonic Clothes Washer/Dryer Combination for Moon, Mars, and ISS Applications
Gabriella Schauss (University of Colorado Boulder) and Allison Anderson (University of Colorado Boulder Bioastronautics)	James Nabity (University of Colorado Boulder)	Ayyoub Momen, Jonathan Bigelow, Connor Shelander, Justin Ellis, Dennis Chertkovsky (Ultrasonic Technology Solutions), Michael Ewert (JSC NASA) and Melissa McKinley (NASA)
ICES-2023-396 Implementing a Biorobotic Spacesuit Glove Solution to Optimize Crew Performance for Planetary Surface Operations	ICES-2023-209 Integrating Real-Time Environmental Data into an Educational Web Interface	ICES-2023-73 Solid Waste Ultrasonic Drying Performance under Zero Gravity Condition and the Impact on Material Bioactivity
Danielle Carroll (University of Colorado Boulder), Spencer Dansereau (University of Colorado Boulder), Taylor Tvrdy (University of Colorado Boulder), Allison Anderson (University of Colorado Boulder) and Stephen Robinson (University of California Davis)	Meridith Greythorne, Gregory Ross, Ian Castellanos, Grant Hawkins, Ezio Melotti, Ryan Meneses, Kai Staats (Over the Sun, LLC) and Gretchen Hollingsworth (Barrow Arts & Sciences Academy)	Ayyoub Momen (Ultrasonic Technology Solutions), Connor Shelander (Ultrasonic Technology Solutions), Jonathan Bigelow (Ultrasonic Technology Solutions) and Tra-My Justine Richardson (NASA)
ICES-2023-426 A Localized Compute Platform to Support EVA Software Applications		ICES-2023-263 Using Effluent from a Hybrid Anaerobic Membrane Bioreactor Treating Fecal Waste for Hydroponic Fertigation of Pak Choi
Michael Vandi (Celestial Systems), Larysa Paliashchuk (Celestial Systems) and Ashish Upadhyay (Celestial Systems)		Alexandra Smith, Talon Bullard (University of South Florida), Daniella Saetta (University of South Florida/ NASA), Jason Fischer (NASA/ LASSO), Katrina Haarmann, Flaubert Nascimento Akepeu (University of South Florida), Luka Roberson (NASA) and Daniel

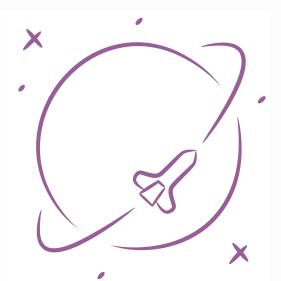
14:00

14:30

15:00

15:30

of South Florida), Luke Roberson (NASA) and Daniel


Yeh (University of South Florida)

SWEDNESDAY 19 JULY EARLY AFTERNOON

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-H: AIChE/ICS/IIC ICES305: AIChE/ICS/TECS/ AIAA LS&S 302: Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development 305: Environmental Control of Commercial and Exploration Spacecraft	ICES301: AIChE Advanced Life Support Systems Control	ICES308-A: AIChE Advanced Technologies for In-Situ Resource Utilization
	302 ORGANIZERS: 305 ORGANIZERS: MORGAN ABNEY, NASA JORDAN HOLQUIST, ESC PARAGON SDC GRACE BELANCHIK, TONY RECTOR, BLUE ORIGIN NASA ARC CHANG HYUN SON, BOEING JIM KNOX, DYNETICS DAVID WILLIAMS, NASA JSC TECHNICAL SOLUTIONS MAEVE ACHESON, SPACEX PATRICK OGER, AIRBUS MICHAEL WALES, BLUE ORIGIN	ORGANIZERS: CHANG HYUN SON, THE BOEING COMPANY CYNTHIA REULAND, AERODYNE NIKOLAY IVANOV, PETER THE GREAT SAINT PETERSBURG POLYTECHNIC UNIVERSITY, RUSSIA CLIFF MARTIN, THE BOEING COMPANY AMY CALDWELL, THE BOEING COMPANY	ORGANIZERS: CHRISTIAN JUNAEDI, PRECISION COMBUSTION, INC. JORDAN HOLQUIST, PARAGON SPACE DEVELOPMENT CORPORATION JERRY SANDERS, NASA JOHNSON SPACE CENTER
:00	ICES-2023-104 (ICES302) Integrated Testing of the Air-Cooled Temperature Swing Adsorption Compression System (AC-TSAC) and 4-Bed Molecular Sieve (4BMS)	ICES-2023-51 Development of an efficient alternative to recovery 02 from metabolic CO2 via electrolysis operated at ambient temperature and driven by a highly selective catalysis	ICES-2023-475 An Experimental Study on Low Pressure Frost Formation for Lunar Polar Water Capture
	Jonathan Wells (KBR / NASA Ames), Kelby Gan (KBR / NASA Ames), Arisa Waddle (ESSCA) and Grace Belancik (NASA Ames)	Jesus Dominguez (Jacobs JSEG IG), Cara Black, Brittany Brown (NASA Marshall Space Flight Center), Wilaiwan Chanmanee, Brian Dennis (University of Texas at Arlington), Lorlyn Reidy, Shannon McCall (Jacobs JSEG), Kaitlin Oliver- Butler (NASA Marshall Space Flight Center) et al.	Beau Compton (NASA Glenn Research Center), Timothy Krause (Universities Space Research Association) and Leah Struchen Deans (NASA Glenn Research Center)
÷:30	ICES-2023-196 (ICES302) Development of CO2 Reduction-Water Electrolysis Tandem Device as a Full-Scale Model	ICES-2023-290 PESTO: An Agile Computational Solution for ECLSS Simulation and Control for the Gateway Air Revitalization System	ICES-2023-136 Demonstration and Model Validation of Freeze Distillation as a Purification Step for Lunar Water Processing
	Asuka Shima (Japan Aerospace Exploration Agency), Masato Sakurai (Japan Aerospace Exploration Agency), Yoshitsugu Sone (Japan Aerospace Exploration Agency), Hironori Nakajima (Kyushu Univ), Mitsuhiro Inoue (Univ. of Toyama) and Takayuki Abe (Univ. of Toyama)	Jonathan Anthony (Paragon Space Development Corporation) and Gregory Doidge (Paragon Space Development Corporation)	Connor Joyce, Jordan Holquist, Alex Ruble, Robert Rivera and Timothy Moeller (Paragon Space Development Corporation)
5:00	ICES-2023-248 (ICES305) The LIFETM Habitat (Large Integrated Flexible Environment) Air Revitalization System Development	ICES-2023-222 Long Term Material Circulation Control and Handling Repair Order in ALSS by Hierarchical Approach	ICES-2023-108 Demonstration of Paragon's ISRU Propellant Production Subsystem Electrolyzer and Electrolysis Assembly
	Sam Moffatt (Sierra Space), Mark Mentink (Sierra Space), Michael Martinez (Sierra Space), Jacob Fischer (Sierra Space), Matt Hurr (Sierra Space), Adam Marten (Sierra Space) and Abolfazl Shakouri (Sierra Space)	Masakatsu Nakane (Nihon University) and Hiroyuki Miyajima (International University of Health and Welfare)	Jordan Holquist, Connor Joyce, Robert G Rivera, Philipp Tewes (Paragon Space Development Corporation), Timothy Myles (Giner, Inc.), David Markham (Giner, Inc.), Thomas Ebaugh (Giner, Inc.), Meagan Rich (Giner, Inc.) and Jason Willey (Plug Power)
5:30	ICES-2023-383 (ICES302) Microbial Mayhem: Microbial Growth Potential in CO2 Removal Systems Designed for Long- Duration Spaceflight	ICES-2023-184 Numerical Analysis of Lunar Dust in Support of the Habitat and Logistics Outpost	
	Nico Whitlock (KBR Wyle, NASA Ames Research Center) and Grace Belancik (NASA Ames Research Center)	Owen G. Brown (Northrop Grumman), James C. Eblin (Northrop Grumman), Luis M. Bermudez (Northrop Grumman) and Zach Turner (Northrop Grumman).	

S EARLY CAREER WORKSHOP

SPONSORED BY

OCEANEERING

WEDNESDAY, 19 JULY - 16:00 HRS THOMSONS SOCIAL HUB (BACK OF RESTAURANT)

This casual forum is a networking opportunity for students and young professionals to connect with veterans in the field to learn about how to best develop their future careers in the domain of environmental systems.

If you would like to attend and did not already RSVP during registration, please stop by the ICES Registration & Information desk to let us know.

Get sage advice and learn about the career journeys of industry professionals including ...

ART AVILA NASA Jet Propulsion Laboratory

BRYAN SHAUGHNESSY Science and Technology Facility Council UK

CINDY REULAND NASA

DARNELL COWAN NASA Johnson Space Center

GRACE BELANCIK NASA Ames Research Center

GREGORY NAVARRO CNES

HUME PEABODY NASA Goddard Space Flight Center

JEN MILLER NASA Jet Propulsion Laboratory JORDAN HOLQUIST Paragon Space Development Corporation

MARTIN ALTENBURG Airbus

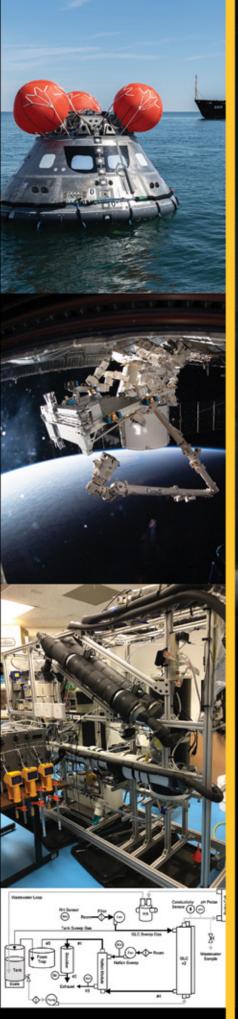
MATTHEW VAUGHAN European Space Agency

MORGAN ABNEY NASA Engineering & Safety Center

ROMAIN PEYROU European Space Agency

SAURABH VILEKAR Precision Combustion, Inc.

YANN CERVANTES CNES



Connecting What's Needed With What's Next™

PROVEN ENGINEERING POWERED BY INNOVATION DRIVEN BY TEAMWORK

Delivering next-gen technology and mission-focused solutions to solve critical aerospace challenges

> Connect with what's next at oceaneering.com/OSS Copyright © 2023 Oceaneering International, Inc. All rights reserved. Photo Credit: NASA

S BANQUET KEYNOTE SPEAKER

WEDNESDAY, 19 JULY – 19:00 HRS IMPERIAL BALLROOM

DR. LISA WATSON-MORGAN -+

Manager, Human Landing System Program (NASA Marshall Space Flight Center)

With more than 30 years of contributions and accomplishments in the country's civilian space program, Dr. Lisa Morgan-Watson has proven her leadership expertise and subject matter strengths throughout her career at NASA's Marshall Space Flight Center in Huntsville.

A Huntsville native, Watson-Morgan graduated in 1991 from The University of Alabama with a bachelor's degree in industrial engineering. She received her master's degree in systems engineering in 1994 and her doctorate in engineering management in 2008 from the University of Alabama in Huntsville.

Watson-Morgan began her career with NASA working as a data systems engineer at Marshall while she was still a student at UA. She held this position until 1999 when she became the mission support requirements and development team lead.

After taking a year to solely work on her doctorate, Watson-Morgan worked as ground systems operations branch chief while she completed her degree. She then began to move up through several positions in Science and Missions Systems from 2008-2011 including deputy chief engineer, assistant manager and acting chief engineer.

In 2011, Watson-Morgan became chief engineer of Flight Programs and Partnerships. She was named acting associate director for Technical, Engineering Directorate in 2013 and was appointed to the Senior Executive Service. After working in that position, Watson-Morgan was manager in the Office of Chief Engineer until 2015 and manager of the Spacecraft and Vehicle Systems Department, Engineering until 2018.

During the next two years, she worked as associate director for operations in engineering and then as deputy director of engineering. As deputy director, Watson-Morgan oversaw more than 2,300 employees who worked to develop, test and deliver spaceflight hardware and software.

She was chosen as program manager of the Human Landing System program in July 2019. In this position, Watson-Morgan oversees the planning and creation of integrated lunar landing systems that will transport the first woman and next man to the moon in the next five years. With help from industry, Watson-Morgan's team will support NASA's Artemis Program, which will enable long-term visits to the moon by 2026 and facilitate the next steps to reaching Mars.

Awards she has earned during her time with NASA, three of the most notable are the 2001 Exceptional Service Medal, 2010 Exceptional Achievement Medal and 2018 Meritorious Presidential Rank Award. Dr. Watson-Morgan is a University of Alabama Technical Fellow and was inducted into the state of Alabama Engineering Hall of Fame.

REVOLUTIONIZING THE SPACE BUSINESS

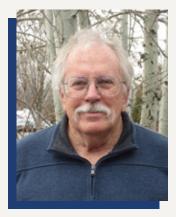
Sierra Space is an established supplier of high-reliability satellites and spacecraft hardware, with multiple areas of expertise, including space solar power generation, precision pointing and motion control, spacecraft docking and berthing, payload separation systems and multi-satellite dispensers, propulsion engines and systems, and spacecraft environmental and thermal control, and life support systems.

For decades, our products have played a key role in space science and exploration, with a long legacy of contribution to government, commercial, and civil customers on a diverse set of missions. Thousands of products, supporting hundreds of missions, with 100% operational success.

This is why our customers choose Sierra Space.

SCAN HERE FOR APPLICATIONS HARDWARE CATALOG

©2023 SIERRA SPACE CORPORATION


EXAMPLES PRESENTATIONS

AIAA JEFFRIES AEROSPACE MEDICINE AND LIFE SCIENCES RESEARCH AWARD

Recognizing the importance to aeronautics of scientific endeavors in the field of medicine, the Jeffries Aerospace Medicine and Life Sciences Research Award was established in 1940 as the John Jeffries Award to honor the memory of the American physician, John Jeffries, whose scientific investigations were published in a "Narrative of Two Aerial Voyages" in 1796.

ICES AWARDS BANQUET -

WEDNESDAY, 19 JULY - 18:30 HRS | IMPERIAL BALLROOM

2023 RECIPENT BRUCE W. WEBBON NASA Ames Research Center (ret)

Award Citation:

"For innovative engineering, leadership and mentorship in life support, human physiology, thermal control, and extravehicular activity technology development, to advance NASA's human exploration goals." Dr. Bruce W. Webbon devoted his aerospace career to the pursuit of routine, safe human exploration of the solar system, to the development of aerospace technologies and of people to achieve that goal, and to transferring NASA technologies for the benefit of humanity. He has worked in private industry, in academia, and in government, always with a focus on EVA, ECLS or space technology; and with the objective of maximizing output and professional development of staff. Equally comfortable at the lab bench, or multiplying his output as a manager who guides the work of others, he has stewarded the development of a wide number of technologies spanning the disciplines of EVA, ECLS, space physiology, and earthbound medicine. He has mentored the next generation and shared his knowledge through teaching, publications, advisory committees and review panels, and has consistently and selflessly strived to advance and promote the achievements of his employees, colleagues, mentees and students over his own.

Dr. Webbon worked at Vought Aerospace, SRI International, NASA Ames, UC Santa Cruz, and Oregon Institute of Technology, remaining focused on protective systems, human physiology in harsh or altered environments, and technology development. At SRI he led a team in bioinstrumentation with both civil space and military applications. At NASA Ames he led the methodical evaluation of the AX-5 space suit, and he led the development of a small-size neutral buoyancy facility, for rapid testing of suits, enabling underwater evaluation independent of the larger and more heavily scheduled test facilities at that time. In addition to the suit testing, two key graduate student projects under his supervision utilized that neutral buoyancy facility. One investigated the energy associated with walking in Lunar and Martian gravities. The other investigated the metabolic energy expended under varied center of gravity positions of the PLSS.

Bruce also evaluated radiators, fusible heat sinks, evaporators, sublimators, and heat pipes for use in life support systems, and a dual-walled, gold-coated hard suit concept for thermal control. He brought together the manufacturers of military armored vehicles and hazmat suits, with the designer of the suit port concept and fresh engineers to fabricate and demonstrate to the community a workable suit port prototype.

Bruce continually promoted medical applications of NASA technology and worked with a number of physicians to bring cooling garments to patients in varied therapeutic settings.

INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SYSTEMS (ICES) AWARD FOR TECHNICAL EXCELLENCE

The International Conference on Environmental Systems (ICES) Award for Technical Excellence recognizes individual technical contributions to Space Environmental Control and Life Support (ECLSS), Thermal Control Systems (TCS), Extravehicular Activity (EVA), Crew Systems, and Habitation. The individual selected is being recognized for accomplishments that advance the state of the art in the environmental control industry, contributions to ICES-related parts of space projects, and/or efforts supporting the organization and conduct of the ICES conference. Candidates for the ICES Award are nominated by peers through the ICES sponsoring committees and selected by the ICES Steering Committee.

2023 RECIPIENT TO BE ANNOUNCED DURING THE BANQUET.

PAST RECIPIENTS:

2022 Amy Ross 2021 Chang H. Son & Jentung Ku 2019 David Klaus 2018 Andrew Jackson 2017 Greg Gentry 2016 Wolfgang Supper 2015 Jeffery T. Farmer 2014 Harry W. Jones 2013 Edward Hodgson 2012 Phil Spampinato 2011 Joe Chambliss 2010 Burkard Behrens 2009 Barry Finger 2008 Bill Atwell 2007 Michael Rouen 2006 John W. Fisher 2005 Keiji Nitta 2004 Richard L. Olson 2003 Alan Drysdale 2002 John B. Hall Jr. 2001 Richard Reysa

ICES STUDENT POSTER AWARDS

The Student Poster Competition conducted earlier in the week consisted of 18 posters presented by students from 12 different universities and were judged by professionals in the ICES community on technical content, poster quality, and presentation of the material.

THURSDAY 20 JULY EARLY MORNING

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES203-A: IIC Thermal Testing	ICES207-B: IIC/TECS Thermal and Environmental Control Engineering Analysis and Software	ICES204-B: IIC/AIAA LS&S Bioregenerative Life Support
	ORGANIZERS: GERD JAHN, AIRBUS LUKE TAMKIN, AIRBUS HIROYASU MIZUNO, JAXA ANDREA FERRERO, THALES ALENIA SPACE	ORGANIZERS: HENRI BROUQUET, ITP AERO BRIAN BRIGGS, NASA JET PROPULSION LABORATORY MATTHEW VAUGHAN, EUROPEAN SPACE AGENCY HUME PEABODY, NASA GODDARD SPACE FLIGHT CENTER	ORGANIZERS: CESARE LOBASCIO, THALES ALENIA SPACE MASATO SAKURAI, JAXA MIRIAM SARGUSINGH, NASA JOHNSON SPACE CENTER PAUL ZABEL, DLR MONONITA NUR, NASA
9:00	ICES-2023-48 Assessing Technical Risk of Tailoring Space Vehicle Thermal Vacuum Testing	ICES-2023-111 Small Satellite Validation of a Simulation Approach for Assessing Dynamic Temperatures in Orbit	ICES-2023-421 1st International Space Ecology Workshop - Research Needs & Roadmap to the Future
	John Welch (The Aerospace Corporation)	Corey Packard (ThermoAnalytics, Inc.), Timofey Golubev (ThermoAnalytics, Inc.), Daniel Woodford (ThermoAnalytics, Inc.), Madison Rosiek (ThermoAnalytics, Inc.) and Zachary Edel (ThermoAnalytics, Inc.)	Christine Escobar (Space Lab Technologies), Patrick Grubbs (Spring Institute for Forests on the Moon), Frieda Taub (University of Washington), Jane Shevtsov (Propagule Space Ecology Institute), Sherri Damlo and Stephen Lantin (University of Florida)
9:30	ICES-2023-317 Lunar Environment Monitoring Station TRL-6 Thermal Vacuum Test and Results	ICES-2023-152 Space Rider Re-entry Module Thermal Transient Uncertainty Analysis: Metholodogy and Results	ICES-2023-220 Microbial Electrochemical Technologies for Regenerative Life Support Systems
	Ethan Burbridge (Vertex Aerospace, LLC), Mehdi Benna (University of Maryland, Baltimore County) and Mitchell Hamann (AMU Engineering)	Gianni Pippia (Thales Alenia Space Italia), Maria Chiara Berva (Thales Alenia Space Italia), Massimo Bertone (Thales Alenia Space Italia), Corrado Guglielmo (Thales Alenia Space Italia), Andrea Ferrero (Thales Alenia Space Italia), Giovanni Chirulli (ESA) and Egidio Collavo (ESA)	Amanda Kay Luther (Redwire Space NV), Jean-Romain Bautista Angeli (University of Ghent), Dries Demey (Redwire Space NV), Korneel Rabaey (Hydrohm) and Jolien De Paepe (Hydrohm)
10:00	ICES-2023-6 Development and Application of a Novel Calorimetry Technique for the Study of Lithium-Ion Cell Thermal Runaway	ICES-2023-305 Modeling of Gateway Environment Control and Life Support Systems as a Means to Investigate the Subsystem and Integrated Architecture Performance	ICES-2023-281 Survey of Microbial Community in Bioreactors Used for Bioregenerative Water Purification
	Steven Rickman (NASA)	Lawrence Barrett (Jacobs), Rachel Sturtz (Jacobs) and Madelyn Hutchinson (Jacobs)	Daniella Saetta (University of South Florida), Jason Fischer (Kennedy Space Center), Talon Bullard, Alexandra Smith (University of South Florida), Cory Spern, Anirudha Dixit, Christina Khodadad (Kennedy Space Center), Daniel Yeh (University of South Florida) et al.

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES403-A: ICS Extravehicular Activity: Space Suit and Surface Mobility Operations	ICES511: AIAA LS&S Reliability for Space Based Systems	ICES304-E: AIChE/IIC Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development
ORGANIZERS: CINDA CHULLEN, NASA JOHNSON SPACE CENTER CHRISTIE SAUERS, NASA JOHNSON SPACE CENTER	ORGANIZERS: TODD H. TREICHEL, SIERRA SPACE GREGORY L. DAVIS, NASA JET PROPULSION LABORATORY	ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER STEVE SEPKA, NASA MATTEO LAMANTEA, THALES ALENIA SPACE ANNIE MEIER, NASA KENNEDY SPACE CENTER RAY PITTS, NASA KENNEDY SPACE CENTER
ICES-2023-59 Testing the Exploration Conops(Excon) Mockup Suit in Lunar Analog Environments in 2022	ICES-2023-138 Coatings for Space-Based Systems: Impacts of Plasma Processes	ICES-2023-47 Benefits of Trash-to-Gas versus Jettison of Waste via Trash-Lock for Mars Transit
Zachary Tejral (NASA), Zachary Fester (NASA), Christine Flaspohler (NASA), Tommy Keomany (NASA), Kristine Davis (NASA), Trevor Graff (Jacobs Engineering) and David Coan (The Aerospace Corporation)	Richard Clergereaux (CNRS - Laplace), Veronica Orlandi (CNRS - Laplace), Myrtil Kahn (CNRS - LCC), Gregory Navarro (CNES - Spaceship) and Alexis Paillet (CNES - Spaceship)	Thomas Chen (NASA Johnson Space Center), Michael Ewert (NASA Johnson Space Center) and Joel Olson (Southeastern Universities Research Association, NASA Kennedy Space Center)
ICES-2023-278 New Equipment and Techniques for Steep and Vertical Terrain Access in Planetary EVA Operations	ICES-2023-183 Development of a Damageable ECLSS and Interior-Environment Virtual Testbed Model to Simulate Future Resilient Deep Space Habitats	ICES-2023-63 Analysis of the Solid Products from the OSCAR and the AOWG Trash Processing Systems
Nate Ball (Atlas Devices), Daniel Walker (Atlas Devices) and Gino Kahaunaele (Atlas Devices)	Seungho Rhee (Purdue University), Zoe Noble (Purdue University), Jaewon Park (Purdue University), Amanda Lial (Purdue University), Laura Collazo Carballude (Purdue University) and Davide Ziviani (Purdue University)	Anne Meier (NASA), Mahmoud Matar Abed (University of Minnesota), Stacy Carrera (Pioneer Astronautics), Joel Olson (Southeastern Universities Research Association) and David Rinderknecht (NASA)
ICES-2023-298 Trades, Architecture, and Design of the Joint Augmented Reality Visual Informatics System (Joint AR) Product	ICES-2023-433 Design and Optimization of a Test Setup for Low Thermal Conductance Measurements	ICES-2023-283 Plasma Abatement of Volatile Organic Compounds
Paromita Mitra (NASA), Matthew Miller (Jacobs/NASA JSC), Briana Krygier (NASA), Sarosh Nandwani (NASA), Matthew Noyes (NASA), Vishnuvardhan Selvakumar (Purdue University), Amanda Smith (KBR Wyle/NASA JSC) and Tyler Garrett (NASA)	Natalie Walsh (The Aerospace Corporation), Christopher Ye (The Aerospace Corporation), Christopher Bertagne (The Aerospace Corporation), Yoshimi Takeuchi (The Aerospace Corporation) and John McHale (The Aerospace Corporation)	Joel Olson (Southeastern Universities Research Association), Ryan Gott (NASA Kennedy Space Center), Shayla Wilhelm (Southeastern Universities Research Association), Kenneth Engeling (NASA Kennedy Space Center), Caiden Campbell (NASA OSTEM Intern) and Ray Pitts (NASA Kennedy Space Center)

9:00

9:30

10:00

THURSDAY 20 JULY EARLY MORNING

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-I: AIChE/ICS/IIC 302: Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development	ICES503: AIAA LS&S Radiation Issues for Space Flight	ICES308-B: AIChE Advanced Technologies for In-Situ Resource Utilization
	ORGANIZERS: MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS	ORGANIZERS: RON TURNER, ANSER SHIRIN RAHMANIAN, NASA LANGLEY RESEARCH CENTER	ORGANIZERS: CHRISTIAN JUNAEDI, PRECISION COMBUSTION, INC. JORDAN HOLQUIST, PARAGON SPACE DEVELOPMENT CORPORATION JERRY SANDERS, NASA JOHNSON SPACE CENTER
9:00	ICES-2023-206 Preliminary Study of Moisture Absorption and Desorption in CO2 Removal System	ICES-2023-474 Artemis-I - Development and Testing of Radiation Mitigation Strategies for Crewed Missions	ICES-2023-17 Pressure Retarded Osmosis for Water Supply for Alkaline High Pressure Electrolysis
	Masato Sakurai (JAXA), Asuka Shima (JAXA), Kentaro Hirai (JAXA), Chiaki Yamazaki (JAXA), Shotaro Futamura (JAXA), Satoshi Matsumoto (JAXA) and Hideki Saruwatari (JAXA)	Janet Barzilla (Leidos, Civil Group Integrated Missions Operations), Ramona Gaza (Leidos, Civil Group Integrated Missions Operations) and Nicholas Stoffle (Leidos, Civil Group Integrated Missions Operations)	Sebastian Markgraf (Airbus Defence and Space GmbH), Fabian Fremdling (Airbus Defence and Space GmbH), Walter Jehle (Airbus Defence and Space GmbH) and Martino Giobbio (Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands)
9:30	ICES-2023-219 Development of Novel Structured Adsorbent to Increase Trapping Efficiency of Water and Carbon Dioxide	ICES-2023-365 Nuclear Data Needs for GCR Shielding Models	ICES-2023-297 Scale Up and Coupling of the MOXIE Solid Oxide Electrolyzer for Mission-Scale Lunar and Martian Applications
	Pascal Barbier (Air Liquide Advanced Technologies), Cedric Dupont (Air Liquide Advanced Technologies), Alexis Paillet (CNES) and Gregory Navarro (CNES)	Lawrence Heilbronn (University of Tennessee)	Michele Hollist (OxEon Energy), Joseph Hartvigsen (OxEon Energy), Jessica Elwell (OxEon Energy), S. Elangovan (OxEon Energy), Tyler Hafen (OxEon Energy) and Jenna Pike (OxEon Energy)
10:00	ICES-2023-400 Preliminary Investigation of Vortex Phase Separator-Based Spacecraft Cabin Air Dehumidification Subsystem for CO2 Removal	ICES-2023-20 Spacecraft Scale Magnetospheric Protection from Galactic Cosmic Radiation	ICES-2023-3 Regenerative Solid Oxide Stack for Energy Storage
	Chirag Byanjankar (University of North Texas), Alexander Sarvadi (University of North Texas), Huseyin Bostanci (University of North Texas), Cable Kurwitz (Texas A&M University) and Grace Belancik (NASA Ames Research Center)	John Slough (MSNW LLC)	Saurabh Vilekar (Precision Combustion, Inc.), Christian Junaedi (Precision Combustion, Inc.), Kyle Hawley (Precision Combustion, Inc.), Eric Allocco (Precision Combustion, Inc.) and Jessica Rehaag (Precision Combustion, Inc.)

NOTES +	

THURSDAY 20 JULY LATE MORNING

	WALKER/BANNERMAN	DOLL/HERALD	STEPHEN A/B
	ICES203-B: IIC Thermal Testing	ICES207-C: IIC/TECS Thermal and Environmental Control Engineering Analysis and Software	ICES204-C: IIC/AIAA LS&S Bioregenerative Life Support
	ORGANIZERS: GERD JAHN, AIRBUS LUKE TAMKIN, AIRBUS HIROYASU MIZUNO, JAXA ANDREA FERRERO, THALES ALENIA SPACE	ORGANIZERS: HENRI BROUQUET, ITP AERO BRIAN BRIGGS, NASA JET PROPULSION LABORATORY MATTHEW VAUGHAN, EUROPEAN SPACE AGENCY HUME PEABODY, NASA GODDARD SPACE FLIGHT CENTER	ORGANIZERS: CESARE LOBASCIO, THALES ALENIA SPACE MASATO SAKURAI, JAXA MIRIAM SARGUSINGH, NASA JOHNSON SPACE CENTER PAUL ZABEL, DLR MONONITA NUR, NASA
11:00	ICES-2023-126 METimage Visible and Infrared Detectors End to End Co-Alignment Verification at Cryogenic Subsystem Level	ICES-2023-218 Reduction and Correlation of Lumped Parameter Method for Thermal Models in Steady-State Conditions	ICES-2023-274 Integration and Validation of Mushroom and Algae into an Agent-based Model of a Physico-chemical and Bioregenerative ECLSS
	Raphaël Naire, Anja Bergs, Theresa Bonenberger, Robert Schweikle, Heiko Joos, Bernhard Dorner and Klaus Werner Kruse (Airbus Defence and Space GmbH)	Ignacio Torralbo Gimeno (IDR/UPM), German Fernandez- Rico (Max Planck Institute for Solar System Research), Javier Piqueras-Carreño (Universidad Politécnica de Madrid) and Isabel Perez-Grande (Universidad Politécnica de Madrid)	Sean Gellenbeck (University of Arizona), Joel L. Cuello (Department of Agriculture and Biosystems Engineering, University of Arizona, Tucson, Arizona, USA), Barry Pryor (University of Arizona), Kai Staats (Over the Sun, LLC) and Chuck Gerba (University of Arizona)
11:30	ICES-2023-243 Cryogenic Thermal Test Setup for ARIEL FGS Instrument	ICES-2023-372 BBTherm: A High-Fidelity Analysis Tool for Estimating the In-Vacuum Thermal Conductance Across Ball Bearings	ICES-2023-258 Integration of a Photobioreactor into the MaMBA Facility as Part of a Human- centered Life Support System
	Piotr Osica (Spacive Sp. z o.o.), Karolina Wielgos (Spacive Sp. z o.o.), Agata Białek, (Space Research Centre of the Polish Academy of Sciences (CBK PAN)), Markus Czupalla (FH Aachen - University of Applied Sciences) and Cezary Gąsowski (Spacive Sp. z o.o.)	Christopher Bertagne (The Aerospace Corporation), Christopher Ye (The Aerospace Corporation), Natalie Walsh (The Aerospace Corporation), John McHale (The Aerospace Corporation) and Yoshimi Takeuchi (The Aerospace Corporation)	Paul Große Maestrup, Ksenia Appelganc, Saurabh Band, Florian Stechmann, Vera Hagemann, Anna Förster, Cyprien Verseux and Christiane Heinicke (University of Bremen)
12:00	ICES-2023-153 The Thermal Balance/Thermal Cycling Test of Euclid	ICES-2023-162 A System-Level Spacecraft Thermal Model Reduction Method Applicable to Transient Analysis	
	Marco Gottero, Andrea Ferrero, Roberto Bogiatto (Thales Alenia Space Italia), Daniele Stramaccioni, Alex Short (European Space Agency), Giorgio Costa, Renato Martino and Simone Ferrero (Thales Alenia Space Italia)	Toshihiro Shibukawa (ArkEdge Space Inc.) and Shinichi Nakasuka (The University of Tokyo)	

IMPERIAL 1	IMPERIAL 2	IMPERIAL 3
ICES403-B: ICS Extravehicular Activity: Space Suit and Surface Mobility Operations		ICES304-F: AIChE/IIC Physio-Chemical Life Support - Waste Management Systems - Technology and Process Development
ORGANIZERS: CINDA CHULLEN, NASA JOHNSON SPACE CENTER CHRISTIE SAUERS, NASA JOHNSON SPACE CENTER		ORGANIZERS: JUSTINE RICHARDSON, NASA AMES RESEARCH CENTER STEVE SEPKA, NASA MATTEO LAMANTEA, THALES ALENIA SPACE ANNIE MEIER, NASA KENNEDY SPACE CENTER RAY PITTS, NASA KENNEDY SPACE CENTER
ICES-2023-327 A Decision Support System for Extravehicular Operations Under Significant Communication Latency		ICES-2023-75 Considerations For Waste-to-Base Future Research Paths
Timothy McGrath (JES Tech), Jason Norcross (KBR), Brianna Sparks (NASA), Fernando Figueroa (NASA), Jon Morris (D2K Technologies), Federico Piatti (D2K Technologies) and Jeffrey Somers (NASA)		Steven Sepka (NASA), Michael Ewert (NASA), Jeffrey Lee (NASA (retired)) and Andrew Shapiro (HeroX)
ICES-2023-352 Developing a Hybrid Spacesuit Simulator as a Research Tool for Assessing Extravehicular Activity Relevant Workload		ICES-2023-359 Producing Air Revitalization Sorbents from Spacecraft Waste Biomass
Yayu Monica Hew (KBR Inc), Bradley Hoffmann (KBR Inc), Zachary Wusk (KBR Inc), Karina Marshall-Goebel (NASA Johnson Space Center) and Jeffrey Somers (NASA Johnson Space Center)		Oscar Monje (ESC / Air Revitalization Lab), Joshua Finn (NASA) and Orlando Melendez (NASA)

00:11

11:30

12:00

THURSDAY 20 JULY LATE MORNING

	IMPERIAL 5	IMPERIAL 7	IMPERIAL 9
	ICES302-J: AIChE/ICS/IIC Physio-chemical Life Support - Air Revitalization Systems - Technology and Process Development		ICES308-C: AIChE Advanced Technologies for In-Situ Resource Utilization
	ORGANIZERS: MORGAN ABNEY, NASA ENGINEERING AND SAFETY CENTER GRACE BELANCHIK, NASA AMES RESEARCH CENTER JIM KNOX, DYNETICS TECHNICAL SOLUTIONS PATRICK OGER, AIRBUS		ORGANIZERS: CHRISTIAN JUNAEDI, PRECISION COMBUSTION, INC. JORDAN HOLQUIST, PARAGON SPACE DEVELOPMENT CORPORATION JERRY SANDERS, NASA JOHNSON SPACE CENTER
1:00	ICES-2023-208 Design, Build, Test of a CO2 Removal Testbed and Twin Robotically Manipulable Testbed: Sensing Degradation and Performing Maintenance with Robot/ Human Teaming		ICES-2023-455 Ionic Liquid Parameter Prediction Leveraging Quantum Structure Property Relationships
	Daniela Ivey (UC-Davis), Ulubilge Ulusoy (USC), Samuel Eshima (University of Colorado Boulder), Tammer Barkouki (UC-Davis), Ayush Mohanty (Georgia Tech), Monica Torralba (UC-Davis), Christopher Lindbeck (Georgia Tech Research Institute), Stephen Balakirsky (Georgia Tech Research Institute) et al.		Mitchell Woolever (University of Colorado Boulder), James Nabity (University of Colorado Boulder), Ronald Cook (MDI LLC) and Eric Fox (NASA MSFC)
11:30	ICES-2023-82 Leaky Waveguide Solid Sorbent Desorption System Overview		ICES-2023-313 Carbothermal Reduction System Overview and Developments in Support of the Artemis Program and a Commercial Lunar Economy
	Chris Delnero (Lockheed Martin Space), Clifton Courtney (Lockheed Martin Aeronautics), Arun Bhattacharyya (Lockheed Martin Space) and Kevin Payne (Lockheed Martin Space)		Brant White (Sierra Space Corporation) and Nathan Haggerty (Sierra Space Corporation)
2:00			ICES-2023-52 Extraterrestrial Mining Via Two Coupled Thermal-Driven Phenomena
			Jesus Dominguez (Jacobs JSEG/IG), Cara Black (NASA Marshall Space flight Center), Brittany Brown (NASA Marshall Space flight Center), Paul Hintze (NASA Marshall Space flight Center), Shannon Mccall (Jacobs JSEG) and Kagen Crawford (NASA Marshall Space Center)

THANK YOU, SPONSORS!

The 2023 Steering Committee extends our gratitude to our sponsors for their commitment to enhancing the ICES conference experience. Their generosity supports our journey of discovery and collaboration as we work together to shape the future of human space exploration and create a lasting impact on our planet and beyond.

TECHNICAL ORGANIZING COMMITTEES

ICES THERMAL AND ENVIRONMENTAL CONTROL SYSTEMS (TECS) COMMITTEE

ARTURO AVILA NASA Jet Propulsion Laboratory

GAJANANA C BIRUR NASA Jet Propulsion Laboratory

BRIAN S BRIGGS NASA Jet Propulsion Laboratory

HENRI BROUQUET ITP Engines UK

JOE P CHAMBLISS NASA Johnson Space Center (Retired)

ROBERT COKER Johns Hopkins University

DARNELL COWAN NASA Johnson Space Center

VIVEK DWIVEDI NASA Goddard Space Flight Center

JEFFERY T. FARMER NASA Marshall Space Flight Center

ANDREA FERRERO ThalesAlenia Space

LAUREN FOLEY NASA Johnson Space Center

RANDY FRANCK Ball Aerospace

JOSEPH F GASBARRE NASA-Langley Research Center

TERI GREGORY NASA-Goddard Space Flight Center

JOHN HALL NASA – Retired JUN ISOBE Honeywell International, Inc.

MATTEO LAMANTEA Thales Alenia Space – Italia

THOMAS O LEIMKUEHLER NASA Johnson Space Center

CESARE LOBASCIO Thales Alenia Space Italia

STEPHANIE MAURO NASA-Marshall Space Flight Center

JENNIFER R MILLER NASA Jet Propulsion Laboratory

DIEGO MUGURUSA Collins Aerospace

HIROKI NAGAI Tohoku University

HOSEI NAGANO Nagoya University

NARCRISHA NORMAN Embry-Riddle Aeronautical University

BRIAN F O'CONNOR NASA Marshall Space Flight Center

WES OUSLEY Vertex Aerospace

HUME L PEABODY NASA-Goddard Space Flight Center

OLIVIER PIN European Space Agency (ESA) -ESTEC MAURICE PRENDERGAST NASA Marshall Space Flight Center

GREGORY QUINN Collins Aerospace

JOSE I RODRIGUEZ NASA Jet Propulsion Laboratory

JOSE ROMAN NASA-Marshall Space Flight Center

TYLER SCHMIDT NASA Jet Propulsion Laboratory

BRYAN SHAUGHNESSY Science & Technology Facility Council UK

RUBIK SHETH NASA-Johnson Space Center

DAVID STESLICKI Northrup Grumman

ERIC SUNADA NASA Jet Propulsion Laboratory

ZOLTAN SZIGETVARI Airbus Defence and Space

STEPHANIA TAYLOR NASA Johnson Space Center

NICHOLAS TETI Vertex Aerospace, LLC

DALE A WINTON Honeywell International, Inc.

KAN YANG NASA-Goddard Space Flight Center

ICES INTERNATIONAL COMMITTEE (IIC)

MARTIN ALTENBURG Airbus

MOLLY ANDERSON NASA

LEONID BOBE Niichimmash

FRANK BODENDIECK OHB System AG

HENRI BROUQUET ITP Aero

YANN CERVANTES CNES

ALAIN CHAIX Thales Alenia Space

ALBERTO CORBELLI SITAEL

JOHANNES VAN ES NLR

ANDREA FERRERO Thales Alenia Space JOËL GAYRARD CNES

PHILLIP HAGER ESA

GERD JAHN Airbus

MATTEO LAMANTEA Thales Alenia Space

STEPHANE LAPENSEE ESA

CESARE LOBASCIO Thales Alenia Space

HIROYASU MIZUNO JAXA

HIROYUKI OGAWA JAXA

PATRICK OGER Airbus

ROMAIN PEYROU-LAUGA ESA OLIVIER PIN ESA

ROMAIN POUDEVIGNE ArianeGroup

MASATO SAKURAI JAXA

TIMO STUFFLER OHB System AG

ZOLTAN SZIGETVARI Airbus

LUKE TAMKIN Airbus

ALEJANDRO TORRES IberEspacio

SEAN TUTTLE Nova Systems

DAVID VALENTINI Thales Alenia Space

MATTHEW VAUGHN ESA

GUANGHAN WANG Canadian Space Agency

PAUL ZABEL DLR

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS (AICHE) ENVIRONMENTAL SYSTEMS COMMITTEE

MORGAN B. ABNEY NASA Engineering & Safety Center

APOLLO ARQUIZA Arizona State University

GRACE BELANCHIK NASA Ames Research Center

KEVIN BRAMAN The Boeing Company

GREG CMARIK Jacobs Space Exploration Group

BARRY FINGER Paragon Space Development Corporation

MICHAEL FLYNN NASA

JOHN HOGAN NASA

JORDAN HOLQUIST Paragon Space Development Corporation

NIKOLAY IVANOV Peter the Great St. Petersburg Polytechnic University

CHRISTIAN JUNAEDI Precision Combustion, Inc.

LAURA KELSEY Sierra Space JOCHEN KEPPLER NASA

JIM KNOX NASA

MATTEO LAMANTEA Thales Alenia Space

CLIFF MARTIN The Boeing Company

ANNIE MEIER NASA Kennedy Space Center

DEAN MUIRHEAD

LUCIE POULET University Clermont Auvergne – Institut Pascal

CYNTHIA REULAND The Boeing Company

(TRA-MY) JUSTINE RICHARDSON NASA / Wyle

JERRY SANDERS NASA Johnson Space Center

STEVE SEPKA NASA

MICHAEL SERIO Advanced Fuel Research HALI SHAW KRB Wyle

ABHIJIT V. SHEVADE NASA

SUSAN SNYDER The Boeing Company

CHANG SON The Boeing Company

JOHN STEELE Collins Aerospace

DAVE WICKHAM Reaction Systems Inc.

DAVE WILLIAMS NASA Johnson Space Center

ICES CREW SYSTEMS (ICS) TECHNICAL COMMITTEE

LINDSAY AITCHISON NASA Headquarters

BRIAN ALPERT NASA Johnson Space Center

DAVID AKIN University of Maryland

STEVEN BALISTRERI The Boeing Company

CINDA CHULLEN NASA Johnson Space Center

BRUCE CONGER Jacobs Technology

KRISTINE DAVIS NASA Johnson Space Center

JINNY FERL ILC Dover

GREG GENTRY The Boeing Company – Retired LOEL GOLDBLATT Collins Aerospace

BRAD HOLSCHUH University of Minnesota

SHANE JACOBS David Clark Company

SHAWN MACLEOD Leidos

SHANE MCFARLAND Aegis Aerospace/NASA JSC

GREGORY QUINN Collins Aerospace

MONSI ROMAN NASA Marshall Space Flight Center

AMY ROSS NASA Johnson Space Center

DARREN SAMPLATSKY Collins Aerospace DARYL SCHUCK AWS

PHIL SPAMPINATO

KEITH SPLAWN ILC Dover

DON TUFTS David Clark Company

DAVID WILLIAMS NASA Johnson Space Center

DAVID ZUNIGA Axiom Space

TECHNICAL ORGANIZING COMMITTEES

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS LIFE SCIENCE AND SYSTEMS (AIAA-LS&S) TECHNICAL COMMITTEE

DANIEL ANDERSON Boeing

DANIEL J BARTA NASA-Johnson Space Center

ROBIN BRUCE Colorado Council of Black Nurses, Inc.

DANIEL BUCKLAND Duke University

JOE P CHAMBLISS NASA Johnson Space Center (Retired)

JAMES T CHARTRES NASA-Ames

DR MARC M COHEN Space Cooperative

KEITH CRISMAN University of North Dakota

MARKUS CZUPALLA FH-Aachen University of Applied Sciences

MARIE-CHRISTINE DESJEAN CNES

GREGORIO DRAYER NASA Marshall Space Flight Center

KEVIN R DUDA The Charles Stark Draper Laboratory, Inc.

NANCY R HALL NASA Glenn Research Center

DWIGHT HOLLAND Human Systems Integration

SHANE E JACOBS David Clark Company

JEFFREY JOHNSON Sierra Nevada Corporation

RYAN L KOBRICK Paragon Space Corporation

ARTHUR KREITENBERG

KRIS LEHNHARDT Baylor College of Medicine

JARED LEIDICH World View

BERNADETTE LUNA NASA-Ames JONATHAN G METTS Blue Origin

MARIT E MEYER NASA Glenn Research Center

ROBERT C MORROW Sierra Nevada Corporation

JAMES NABITY University of Colorado Boulder

ANAND NARAYANAN Florida State University

CHRISTOPHER NIE Lockheed Martin Space Systems

CLAAS OLTHOFF Technical University of Munich

ANDY SPRY SETI Institute

TODD H TREICHEL Sierra Space

RONALD E TURNER Analytic Services Incorporated

DAVID L URBAN NASA Glenn Research Center

KASTHURI VENKATESWARAN NASA Jet Propulsion Laboratory

ANTHONY SHEUNG LAI YUEN Weill Cornell Medicine

LUIS ZEA University of Colorado Boulder SPACE • DEFENSE • COMMERCIAL RARACOON SPACE DEVELOPMENT CORPORATION Life Support and Thermal Control for Extreme Environments

Paragon is celebrating its 30th anniversary as an industry leader in life support and thermal control solutions for extreme environments in space, defense and commercial markets. Through superior products and persistent innovation, Paragon is playing a key role in America's mission to return to the moon.

Paragonsdc.com

O

in

ICES 2024

A HOME

RUN

53rd International Conference on Environmental Systems Louisville Marriott Downtown July 21-25, 2024

